메뉴 건너뛰기




Volumn 3, Issue 1-2, 1996, Pages 24-39

Lie symmetries, infinite-dimensional lie algebras and similarity reductions of certain (2+1)-dimensional nonlinear evolution equations

Author keywords

[No Author keywords available]

Indexed keywords


EID: 21244444769     PISSN: 14029251     EISSN: 17760852     Source Type: Journal    
DOI: 10.2991/jnmp.1996.3.1-2.2     Document Type: Article
Times cited : (9)

References (16)
  • 4
    • 36749114221 scopus 로고
    • Lie transformations, nonlinear evolution equations and Painlevé forms
    • Lakshmanan, M., and Kaliappan, P., 1983. Lie transformations, nonlinear evolution equations and Painlevé forms. J. Math. Phys., 24:795
    • (1983) J. Math. Phys. , vol.24 , pp. 795
    • Lakshmanan, M.1    Kaliappan, P.2
  • 6
    • 0000794121 scopus 로고
    • Symmetry reduction for the Kadomstev– Petviashvili equation using a loop algebra
    • David, D., Kamran, N., Levi, D., and Winternitz, P., 1986. Symmetry reduction for the Kadomstev– Petviashvili equation using a loop algebra. J. Math. Phys., 27:1225
    • (1986) J. Math. Phys. , vol.27 , pp. 1225
    • David, D.1    Kamran, N.2    Levi, D.3    Winternitz, P.4
  • 7
    • 0002611736 scopus 로고
    • On the infinite dimensional symmetry group of the Davey– Stewartson equations
    • Champagne, B., and Winternitz, P., 1988. On the infinite dimensional symmetry group of the Davey– Stewartson equations. J. Math. Phys., 9:1
    • (1988) J. Math. Phys. , vol.9 , pp. 1
    • Champagne, B.1    Winternitz, P.2
  • 8
    • 0008026012 scopus 로고
    • Symmetry analysis of the Infeld–Rowlands equation
    • Faucher, M., and Winternitz, P., 1993. Symmetry analysis of the Infeld–Rowlands equation. Phys. Rev. E, 48:3066
    • (1993) Phys. Rev. E , vol.48 , pp. 3066
    • Faucher, M.1    Winternitz, P.2
  • 9
    • 0007793806 scopus 로고
    • Analysis and applications of symmetry group of the multidimensional three wave interaction problem
    • (N.Y.)
    • Martina, L., and Winternitz, P., 1989. Analysis and applications of symmetry group of the multidimensional three wave interaction problem. Ann. Phys., 196:231 (N.Y.)
    • (1989) Ann. Phys. , vol.196 , pp. 231
    • Martina, L.1    Winternitz, P.2
  • 10
    • 85007903032 scopus 로고
    • The infinite-dimensional Lie algebraic structure and the symmetry reductions of a nonlinear higher–dimensional equation
    • Tamizhmani, K.M., and Punithavathi, P., 1990. The infinite-dimensional Lie algebraic structure and the symmetry reductions of a nonlinear higher–dimensional equation. J. Phys. Soc. Japan, 59:843
    • (1990) J. Phys. Soc. Japan , vol.59 , pp. 843
    • Tamizhmani, K.M.1    Punithavathi, P.2
  • 11
    • 45949131143 scopus 로고
    • A multidimensional Schrödinger operator: Inverse scattering transform and evolutional equations
    • Novikov, S.P., and Veselov, A.P., 1986. A multidimensional Schrödinger operator:Inverse scattering transform and evolutional equations. Physica D, 18:267
    • (1986) Physica D , vol.18 , pp. 267
    • Novikov, S.P.1    Veselov, A.P.2
  • 12
    • 0003166937 scopus 로고
    • On the simplest integrable equation in 2+1
    • Fokas, A.S., 1994. On the simplest integrable equation in 2+1. Inv. Prob., 10:L19
    • (1994) Inv. Prob. , vol.10 , pp. L19
    • Fokas, A.S.1
  • 13
    • 33646819537 scopus 로고
    • On generalized Loewner systems: Novel integrable equations in (2+1) dimensions
    • Konopelchenko, B.G., and Rogers, C., 1993. On generalized Loewner systems:Novel integrable equations in (2+1) dimensions. J. Math. Phys., 34:214
    • (1993) J. Math. Phys. , vol.34 , pp. 214
    • Konopelchenko, B.G.1    Rogers, C.2
  • 14
    • 0001820561 scopus 로고
    • Wave solutions of a (2+1) dimensional generalization of the nonlinear Schrödinger equations
    • Strachan, I.A.B., 1992. Wave solutions of a (2+1) dimensional generalization of the nonlinear Schrödinger equations. Inv. Prob., 8:L21
    • (1992) Inv. Prob. , vol.8 , pp. L21
    • Strachan, I.A.B.1
  • 15
    • 21844518783 scopus 로고
    • Singularity analysis and localized coherent structures in (2+1) dimensional generalized Korteweg–deVries equations
    • Radha, R., and Lakshmanan, M., 1994. Singularity analysis and localized coherent structures in (2+1) dimensional generalized Korteweg–deVries equations. J. Math. Phys., 35:4746
    • (1994) J. Math. Phys. , vol.35 , pp. 4746
    • Radha, R.1    Lakshmanan, M.2
  • 16
    • 0002085196 scopus 로고
    • Dromion–like structures in the (2+1) dimensional breaking soliton equations
    • Radha, R., and Lakshmanan, M., 1995. Dromion–like structures in the (2+1) dimensional breaking soliton equations. Phys. Lett., 197:7
    • (1995) Phys. Lett. , vol.197 , pp. 7
    • Radha, R.1    Lakshmanan, M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.