메뉴 건너뛰기




Volumn 6, Issue 2, 2004, Pages 233-246

Numerical treatment of homogeneous semi-Markov processes in transient case-a straightforward approach

Author keywords

Algorithms; Integral equations; Numerical methods; Semi Markov processes; Social insurance

Indexed keywords


EID: 21244442700     PISSN: 13875841     EISSN: None     Source Type: Journal    
DOI: 10.1023/B:MCAP.0000017715.28371.85     Document Type: Article
Times cited : (61)

References (15)
  • 5
    • 25844447988 scopus 로고
    • A computational procedure for the asymptotic analysis of homogeneous semiMarkov processes
    • North Holland
    • R. De Dominicis and R. Manca, "A computational procedure for the asymptotic analysis of homogeneous semiMarkov processes," Statistics and Probability Letters, North Holland, 1984b.
    • (1984) Statistics and Probability Letters
    • De Dominicis, R.1    Manca, R.2
  • 6
    • 3142739104 scopus 로고    scopus 로고
    • On numerical solution of the Markov renewal equation: Tight upper and lower kernel bounds
    • D. A. Elkins and M. A. Wortman, "On numerical solution of the Markov renewal equation: Tight upper and lower kernel bounds," Methodology and Computing in Applied Probability vol. 3 pp. 239-253, 2001.
    • (2001) Methodology and Computing in Applied Probability , vol.3 , pp. 239-253
    • Elkins, D.A.1    Wortman, M.A.2
  • 10
    • 1642288851 scopus 로고    scopus 로고
    • Numerical solution of non-homogeneous semi-Markov in transient case
    • J. Janssen and R. Manca, "Numerical solution of non-homogeneous semi-Markov in transient case," Methodology and Computing in Applied Probability vol. 3 pp. 271-293, 2001.
    • (2001) Methodology and Computing in Applied Probability , vol.3 , pp. 271-293
    • Janssen, J.1    Manca, R.2
  • 13
    • 0000936304 scopus 로고
    • Markov renewal processes with finitely many states
    • R. Pyke, "Markov renewal processes with finitely many states," Am. Math. Stat. vol. 32 pp. 1245-1259, 1962.
    • (1962) Am. Math. Stat. , vol.32 , pp. 1245-1259
    • Pyke, R.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.