-
2
-
-
1142303871
-
-
Methods based on quantum mode-coupling techniques [E. Rabani and D. Reichman, J. Chem. Phys. 0021-9606 10.1063/1.1631436 120, 1458 (2004); A. A. Golosov, D. R. Reichman, and E. Rabani, J. Chem. Phys. 0021-9606 10.1063/1.1535214 118, 457 (2003)] and the initial value representation [M. Thoss, H. Wang, and W. H. Miller, J. Chem. Phys. 114, 47 (2001)] have been used to evaluate quantum correlation functions.
-
(2004)
J. Chem. Phys.
, vol.120
, pp. 1458
-
-
Rabani, E.1
Reichman, D.2
-
3
-
-
0037425654
-
-
Methods based on quantum mode-coupling techniques [E. Rabani and D. Reichman, J. Chem. Phys. 0021-9606 10.1063/1.1631436 120, 1458 (2004); A. A. Golosov, D. R. Reichman, and E. Rabani, J. Chem. Phys. 0021-9606 10.1063/1.1535214 118, 457 (2003)] and the initial value representation [M. Thoss, H. Wang, and W. H. Miller, J. Chem. Phys. 114, 47 (2001)] have been used to evaluate quantum correlation functions.
-
(2003)
J. Chem. Phys.
, vol.118
, pp. 457
-
-
Golosov, A.A.1
Reichman, D.R.2
Rabani, E.3
-
4
-
-
0035367598
-
-
Methods based on quantum mode-coupling techniques [E. Rabani and D. Reichman, J. Chem. Phys. 0021-9606 10.1063/1.1631436 120, 1458 (2004); A. A. Golosov, D. R. Reichman, and E. Rabani, J. Chem. Phys. 0021-9606 10.1063/1.1535214 118, 457 (2003)] and the initial value representation [M. Thoss, H. Wang, and W. H. Miller, J. Chem. Phys. 114, 47 (2001)] have been used to evaluate quantum correlation functions.
-
(2001)
J. Chem. Phys.
, vol.114
, pp. 47
-
-
Thoss, M.1
Wang, H.2
Miller, W.H.3
-
7
-
-
0002507440
-
-
edited by D. L.Thompson (World Scientific, Singapore
-
J. C. Tully, Modern Methods for Multidimensional Dynamics Computations in Chemistry, edited by, D. L. Thompson, (World Scientific, Singapore, 1998), p. 34.
-
(1998)
Modern Methods for Multidimensional Dynamics Computations in Chemistry
, pp. 34
-
-
Tully, J.C.1
-
12
-
-
0141885561
-
-
V. I. Gerasimenko, Reports of Ukrainian Academy Science 10, 65 (1981); V. I. Gerasimenko, Teor. Mat. Fiz. 150, 7 (1982).
-
(1982)
Teor. Mat. Fiz.
, vol.150
, pp. 7
-
-
Gerasimenko, V.I.1
-
13
-
-
0031095742
-
-
C. C. Martens and J.-Y. Fang, J. Chem. Phys. 0021-9606 10.1063/1.473541 106, 4918 (1996); A. Donoso and C. C. Martens, J. Phys. Chem. 102, 4291 (1998).
-
(1996)
J. Chem. Phys.
, vol.106
, pp. 4918
-
-
Martens, C.C.1
Fang, J.-Y.2
-
14
-
-
0142045036
-
-
C. C. Martens and J.-Y. Fang, J. Chem. Phys. 0021-9606 10.1063/1.473541 106, 4918 (1996); A. Donoso and C. C. Martens, J. Phys. Chem. 102, 4291 (1998).
-
(1998)
J. Phys. Chem.
, vol.102
, pp. 4291
-
-
Donoso, A.1
Martens, C.C.2
-
15
-
-
0037461490
-
-
I. Horenko, C. Salzmann, B. Schmidt, and C. Schütte, J. Chem. Phys. 117, 11075 (2002).
-
(2002)
J. Chem. Phys.
, vol.117
, pp. 11075
-
-
Horenko, I.1
Salzmann, C.2
Schmidt, B.3
Schütte, C.4
-
24
-
-
21244477097
-
-
note
-
Apart from cross-transport coefficients that couple fluxes and forces for different variables, most often we are interested in situations where B̂ = Â, and this condition is trivially satisfied.
-
-
-
-
25
-
-
21244503066
-
-
note
-
In general, transport coefficients are defined in terms of flux-flux correlation functions involving projected dynamics for which the infinite time integral is well defined. In practice, projected dynamics is replaced by ordinary dynamics and the transport coefficient is determined from the plateau value of the finite-time integral, assuming that a separation of time scales exists.
-
-
-
-
26
-
-
33745014742
-
-
E. P. Wigner, Phys. Rev. 0031-899X 10.1103/PhysRev.40.749 40, 749 (1932); K. Imre, E. Özizmir, M. Rosenbaum, and P. F. Zwiefel, J. Math. Phys. 0022-2488 5, 1097 (1967); M. Hillery, R. F. O'Connell, M. O. Scully, and E. P. Wigner, Phys. Rep. 106, 121 (1984).
-
(1932)
Phys. Rev.
, vol.40
, pp. 749
-
-
Wigner, E.P.1
-
27
-
-
0000029918
-
-
E. P. Wigner, Phys. Rev. 0031-899X 10.1103/PhysRev.40.749 40, 749 (1932); K. Imre, E. Özizmir, M. Rosenbaum, and P. F. Zwiefel, J. Math. Phys. 0022-2488 5, 1097 (1967); M. Hillery, R. F. O'Connell, M. O. Scully, and E. P. Wigner, Phys. Rep. 106, 121 (1984).
-
(1967)
J. Math. Phys.
, vol.5
, pp. 1097
-
-
Imre, K.1
Özizmir, E.2
Rosenbaum, M.3
Zwiefel, P.F.4
-
28
-
-
34547303281
-
-
E. P. Wigner, Phys. Rev. 0031-899X 10.1103/PhysRev.40.749 40, 749 (1932); K. Imre, E. Özizmir, M. Rosenbaum, and P. F. Zwiefel, J. Math. Phys. 0022-2488 5, 1097 (1967); M. Hillery, R. F. O'Connell, M. O. Scully, and E. P. Wigner, Phys. Rep. 106, 121 (1984).
-
(1984)
Phys. Rep.
, vol.106
, pp. 121
-
-
Hillery, M.1
O'Connell, R.F.2
Scully, M.O.3
Wigner, E.P.4
-
29
-
-
84947399078
-
-
One may show that the evolution equation involving the differential operator i LW (X) is equivalent to the integro-differential equation derived by S. Filinov, Y. V. Medvedev, and V. L. Kamskyi, Mol. Phys. 0026-8976 85, 711 (1995); V. S. Filinov, Mol. Phys. 0026-8976 10.1080/00268979650025605 88, 1517 (1996); V. S. Filinov, Mol. Phys. 88, 1529 (1996).
-
(1995)
Mol. Phys.
, vol.85
, pp. 711
-
-
Filinov, S.1
Medvedev, Y.V.2
Kamskyi, V.L.3
-
30
-
-
0001564386
-
-
One may show that the evolution equation involving the differential operator i LW (X) is equivalent to the integro-differential equation derived by S. Filinov, Y. V. Medvedev, and V. L. Kamskyi, Mol. Phys. 0026-8976 85, 711 (1995); V. S. Filinov, Mol. Phys. 0026-8976 10.1080/00268979650025605 88, 1517 (1996); V. S. Filinov, Mol. Phys. 88, 1529 (1996).
-
(1996)
Mol. Phys.
, vol.88
, pp. 1517
-
-
Filinov, V.S.1
-
31
-
-
0001244645
-
-
One may show that the evolution equation involving the differential operator i LW (X) is equivalent to the integro-differential equation derived by S. Filinov, Y. V. Medvedev, and V. L. Kamskyi, Mol. Phys. 0026-8976 85, 711 (1995); V. S. Filinov, Mol. Phys. 0026-8976 10.1080/00268979650025605 88, 1517 (1996); V. S. Filinov, Mol. Phys. 88, 1529 (1996).
-
(1996)
Mol. Phys.
, vol.88
, pp. 1529
-
-
Filinov, V.S.1
|