-
1
-
-
36149030663
-
Analysis of bounded variation penalty methods for ill-posed problems
-
R. Acar and C. R. Vogel. Analysis of bounded variation penalty methods for ill-posed problems. Inverse Problems, 10:1217-1229, 1994.
-
(1994)
Inverse Problems
, vol.10
, pp. 1217-1229
-
-
Acar, R.1
Vogel, C.R.2
-
2
-
-
0001243359
-
Minimizing total variation flow
-
Mar.
-
F. Andreu, C. Ballester, V. Caselles, and J. M. Mazón. Minimizing total variation flow. Differential and Integral Equations, 14(3):321-360, Mar. 2001.
-
(2001)
Differential and Integral Equations
, vol.14
, Issue.3
, pp. 321-360
-
-
Andreu, F.1
Ballester, C.2
Caselles, V.3
Mazón, J.M.4
-
3
-
-
0036473319
-
Qualitative properties of the total variation flow
-
Feb.
-
F. Andreu, V. Caselles, J. I. Diaz, and J. M. Mazón. Qualitative properties of the total variation flow. Journal of Functional Analysis, 188(2):516-547, Feb. 2002.
-
(2002)
Journal of Functional Analysis
, vol.188
, Issue.2
, pp. 516-547
-
-
Andreu, F.1
Caselles, V.2
Diaz, J.I.3
Mazón, J.M.4
-
5
-
-
0031492191
-
Image recovery via total variation minimization and related problems
-
A. Chambolle and P.-L. Lions. Image recovery via total variation minimization and related problems. Numerische Mathematik, 76:167-188, 1997.
-
(1997)
Numerische Mathematik
, vol.76
, pp. 167-188
-
-
Chambolle, A.1
Lions, P.-L.2
-
6
-
-
0005352194
-
A nonlinear primal-dual method for total-variation based image restoration
-
M.-O. Berger, R. Deriche, I. Herlin, J. Jaffré, and J.-M. Morel, editors, ICAOS '96: Images, Wavelets and PDEs Springer, London
-
T. F. Chan, G. H. Golub, and P. Mulet. A nonlinear primal-dual method for total-variation based image restoration. In M.-O. Berger, R. Deriche, I. Herlin, J. Jaffré, and J.-M. Morel, editors, ICAOS '96: Images, Wavelets and PDEs, volume 219 of Lecture Notes in Control and Information Sciences, pages 241-252. Springer, London, 1996.
-
(1996)
Lecture Notes in Control and Information Sciences
, vol.219
, pp. 241-252
-
-
Chan, T.F.1
Golub, G.H.2
Mulet, P.3
-
7
-
-
0035250066
-
The digital TV filter and nonlinear denoising
-
Feb.
-
T. F. Chan, S. Osher, and J. Shen. The digital TV filter and nonlinear denoising. IEEE Transactions on Image Processing, 10(2):231-241, Feb. 2001.
-
(2001)
IEEE Transactions on Image Processing
, vol.10
, Issue.2
, pp. 231-241
-
-
Chan, T.F.1
Osher, S.2
Shen, J.3
-
9
-
-
3543145041
-
-
Technical Report 2002-01, Dept. of Biomedical Engineering, TU Eindhoven, The Netherlands, Jan.
-
R. Duits, L. Florack, J. de Graaf, and B. ter Haar Romeny. On the axioms of scale space theory. Technical Report 2002-01, Dept. of Biomedical Engineering, TU Eindhoven, The Netherlands, Jan. 2002.
-
(2002)
On the Axioms of Scale Space Theory
-
-
Duits, R.1
Florack, L.2
De Graaf, J.3
Ter Haar Romeny, B.4
-
10
-
-
3543106305
-
Scale-adaptive filtering derived from the Laplace equation
-
B. Radig and S. Florczyk, editors, Pattern Recognition, Springer, Berlin
-
M. Felsberg and G. Sommer. Scale-adaptive filtering derived from the Laplace equation. In B. Radig and S. Florczyk, editors, Pattern Recognition, volume 2032 of Lecture Notes in Computer Science, pages 95-106. Springer, Berlin, 2001.
-
(2001)
Lecture Notes in Computer Science
, vol.2032
, pp. 95-106
-
-
Felsberg, M.1
Sommer, G.2
-
11
-
-
24644439294
-
Analysis of total variation flow and its finite element approximations
-
Technical Report 1864, Institute of Mathematics and its Applications, University of Minnesota, Minneapolis, MN, July Submitted
-
X. Feng and A. Prohl. Analysis of total variation flow and its finite element approximations. Technical Report 1864, Institute of Mathematics and its Applications, University of Minnesota, Minneapolis, MN, July 2002. Submitted to Communications on Pure and Applied Mathematics.
-
(2002)
Communications on Pure and Applied Mathematics
-
-
Feng, X.1
Prohl, A.2
-
13
-
-
35248831677
-
-
Technical Report 6, Department of Computer Science, University of Innsbruck, Austria, Dec.
-
W. Hinterberger, M. Hintermüller, K. Kunisch, M. von Oehsen, and O. Scherzer. Tube methods for BV regularization. Technical Report 6, Department of Computer Science, University of Innsbruck, Austria, Dec. 2002.
-
(2002)
Tube Methods for BV Regularization
-
-
Hinterberger, W.1
Hintermüller, M.2
Kunisch, K.3
Von Oehsen, M.4
Scherzer, O.5
-
14
-
-
0001223708
-
Basic theory on normalization of pattern (in case of typical one-dimensional pattern)
-
In Japanese
-
T. Iijima. Basic theory on normalization of pattern (in case of typical one-dimensional pattern). Bulletin of the Electrotechnical Laboratory, 26:368-388, 1962. In Japanese.
-
(1962)
Bulletin of the Electrotechnical Laboratory
, vol.26
, pp. 368-388
-
-
Iijima, T.1
-
15
-
-
0032166936
-
Close-form solution and parameter selection for convex minimization-based edge-preserving smoothing
-
Sept.
-
S. Z. Li. Close-form solution and parameter selection for convex minimization-based edge-preserving smoothing. IEEE Transactions on Pattern Analysis and Machine Intelligence, 20(9):916-932, Sept. 1998.
-
(1998)
IEEE Transactions on Pattern Analysis and Machine Intelligence
, vol.20
, Issue.9
, pp. 916-932
-
-
Li, S.Z.1
-
16
-
-
0031514745
-
Locally adaptive regression splines
-
E. Mammen and S. van de Geer. Locally adaptive regression splines. Annals of Statistics, 25(1):387-413, 1997.
-
(1997)
Annals of Statistics
, vol.25
, Issue.1
, pp. 387-413
-
-
Mammen, E.1
Van De Geer, S.2
-
18
-
-
0031250126
-
Regularization, scale-space and edge detection filters
-
M. Nielsen, L. Florack, and R. Deriche. Regularization, scale-space and edge detection filters. Journal of Mathematical Imaging and Vision, 7:291-307, 1997.
-
(1997)
Journal of Mathematical Imaging and Vision
, vol.7
, pp. 291-307
-
-
Nielsen, M.1
Florack, L.2
Deriche, R.3
-
20
-
-
0033881977
-
Image segmentation and edge enhancement with stabilized inverse diffusion equations
-
Feb.
-
I. Pollak, A. S. Willsky, and H. Krim. Image segmentation and edge enhancement with stabilized inverse diffusion equations. IEEE Transactions on Image Processing, 9(2):256-266, Feb. 2000.
-
(2000)
IEEE Transactions on Image Processing
, vol.9
, Issue.2
, pp. 256-266
-
-
Pollak, I.1
Willsky, A.S.2
Krim, H.3
-
21
-
-
0346488430
-
Scale-space properties of nonstationary iterative regularization methods
-
June
-
E. Radmoser, O. Scherzer, and J. Weickert. Scale-space properties of nonstationary iterative regularization methods. Journal of Visual Communication and Image Representation, 11(2):96-114, June 2000.
-
(2000)
Journal of Visual Communication and Image Representation
, vol.11
, Issue.2
, pp. 96-114
-
-
Radmoser, E.1
Scherzer, O.2
Weickert, J.3
-
22
-
-
44049111982
-
Nonlinear total variation based noise removal algorithms
-
L. I. Rudin, S. Osher, and E. Fatemi. Nonlinear total variation based noise removal algorithms. Physica D, 60:259-268, 1992.
-
(1992)
Physica D
, vol.60
, pp. 259-268
-
-
Rudin, L.I.1
Osher, S.2
Fatemi, E.3
-
24
-
-
18444373493
-
-
Technical Report 26, Series SPP-1114, Department of Mathematics, University of Bremen, Germany, Feb.
-
G. Steidl, J. Weickert, T. Brox, P. Mrázek, and M. Welk. On the equivalence of soft wavelet shrinkage, total variation diffusion, total variation regularization, and SIDEs. Technical Report 26, Series SPP-1114, Department of Mathematics, University of Bremen, Germany, Feb. 2003.
-
(2003)
On the Equivalence of Soft Wavelet Shrinkage, Total Variation Diffusion, Total Variation Regularization, and SIDEs
-
-
Steidl, G.1
Weickert, J.2
Brox, T.3
Mrázek, P.4
Welk, M.5
-
25
-
-
0003597074
-
-
PhD thesis, Department of Mathematics, University of California, Los Angeles, CA
-
D. M. Strong. Adaptive Total Variation Minimizing Image Restoration. PhD thesis, Department of Mathematics, University of California, Los Angeles, CA, 1997.
-
(1997)
Adaptive Total Variation Minimizing Image Restoration
-
-
Strong, D.M.1
-
26
-
-
0005248537
-
-
Technical Report CAM-96-7, Department of Mathematics, University of California at Los Angeles, CA, U.S.A.
-
D. M. Strong and T. F. Chan. Relation of regularization parameter and scale in total variation based image denoising. Technical Report CAM-96-7, Department of Mathematics, University of California at Los Angeles, CA, U.S.A., 1996.
-
(1996)
Relation of Regularization Parameter and Scale in Total Variation Based Image Denoising
-
-
Strong, D.M.1
Chan, T.F.2
-
29
-
-
0032628159
-
Linear scale-space has first been proposed in Japan
-
May
-
J. Weickert, S. Ishikawa, and A. Imiya. Linear scale-space has first been proposed in Japan. Journal of Mathematical Imaging and Vision, 10(3):237-252, May 1999.
-
(1999)
Journal of Mathematical Imaging and Vision
, vol.10
, Issue.3
, pp. 237-252
-
-
Weickert, J.1
Ishikawa, S.2
Imiya, A.3
-
30
-
-
0024278516
-
A computational theory for the perception of coherent visual motion
-
A. L. Yuille and N. M. Grzywacz. A computational theory for the perception of coherent visual motion. Nature, 333:71-74, 1988.
-
(1988)
Nature
, vol.333
, pp. 71-74
-
-
Yuille, A.L.1
Grzywacz, N.M.2
|