-
1
-
-
0000075234
-
Improving the robustness of descent-based methods for semismooth equations using proximal perturbations
-
Billups, S.C.: Improving the robustness of descent-based methods for semismooth equations using proximal perturbations. Math. Program. 87, 269-284 (2000)
-
(2000)
Math. Program.
, vol.87
, pp. 269-284
-
-
Billups, S.C.1
-
2
-
-
0000024679
-
CUTE: Constrained and unconstrained testing environment
-
Bongartz, I., Conn, A.R., Gould, N., Toint, Ph.L.: CUTE: Constrained and unconstrained testing environment. ACM Trans. Math. Softw. 21, 123-160 (1995)
-
(1995)
ACM Trans. Math. Softw.
, vol.21
, pp. 123-160
-
-
Bongartz, I.1
Conn, A.R.2
Gould, N.3
Toint, Ph.L.4
-
3
-
-
0028387231
-
A study of indicators for identifying zero variables in interior-point methods
-
El-Bakry, A.S., Tapia, R.A., Zhang, Y.: A study of indicators for identifying zero variables in interior-point methods. SIAM Rev. 36, 45-72 (1994)
-
(1994)
SIAM Rev.
, vol.36
, pp. 45-72
-
-
El-Bakry, A.S.1
Tapia, R.A.2
Zhang, Y.3
-
4
-
-
0030242534
-
On the convergence rate of Newton interior-point methods in the absence of strict complementarity
-
El-Bakry, A.S., Tapia, R.A., Zhang, Y.: On the convergence rate of Newton interior-point methods in the absence of strict complementarity. Comput. Optim. Appl. 6, 157-167 (1996)
-
(1996)
Comput. Optim. Appl.
, vol.6
, pp. 157-167
-
-
El-Bakry, A.S.1
Tapia, R.A.2
Zhang, Y.3
-
5
-
-
0043189808
-
A semismooth equation approach to the solution of nonlinear complementarity problems
-
De Luca, T., Facchinei, F., Kanzow, C.: A semismooth equation approach to the solution of nonlinear complementarity problems. Math. Program. 75, 407-439 (1996)
-
(1996)
Math. Program.
, vol.75
, pp. 407-439
-
-
De Luca, T.1
Facchinei, F.2
Kanzow, C.3
-
6
-
-
0032244001
-
On the accurate identification of active constraints
-
Facchinei, F., Fischer, A., Kanzow, C.: On the accurate identification of active constraints. SIAM J. Optim. 9, 14-32 (1998)
-
(1998)
SIAM J. Optim.
, vol.9
, pp. 14-32
-
-
Facchinei, F.1
Fischer, A.2
Kanzow, C.3
-
7
-
-
0034345413
-
On the identification of zero variables in an interior-point framework
-
Facchinei, F., Fischer, A., Kanzow, C.: On the identification of zero variables in an interior-point framework. SIAM J. Optim. 10, 1058-1078 (2000)
-
(2000)
SIAM J. Optim.
, vol.10
, pp. 1058-1078
-
-
Facchinei, F.1
Fischer, A.2
Kanzow, C.3
-
8
-
-
84948263182
-
A special Newton-type optimization method
-
Fischer, A.: A special Newton-type optimization method. Optimization 24, 153-176 (1992)
-
(1992)
Optimization
, vol.24
, pp. 153-176
-
-
Fischer, A.1
-
9
-
-
0002132714
-
An NCP-function and its use for the solution of complementarity problems
-
Du, D.Z., Qi, L., Womersley, R.S. (eds.), World Scientific, Singapore
-
Fischer, A.: An NCP-function and its use for the solution of complementarity problems. In: Du, D.Z., Qi, L., Womersley, R.S. (eds.), Recent Advances in Nonsmooth Optimization, World Scientific, Singapore, 1995, pp. 88-105
-
(1995)
Recent Advances in Nonsmooth Optimization
, pp. 88-105
-
-
Fischer, A.1
-
10
-
-
0003296427
-
Test examples for nonlinear programming codes
-
Springer-Verlag, Berlin
-
Hock, W., Schittkowski, K.: Test Examples for Nonlinear Programming Codes. Lect. Notes in Econ. Math. Syst. 187, Springer-Verlag, Berlin, 1981
-
(1981)
Lect. Notes in Econ. Math. Syst.
, vol.187
-
-
Hock, W.1
Schittkowski, K.2
-
11
-
-
0033365565
-
Global convergence analysis of the generalized Newton and Gauss-Newton methods of the Fischer-Burmeister equation for the complementarity problem
-
Jiang, H.: Global convergence analysis of the generalized Newton and Gauss-Newton methods of the Fischer-Burmeister equation for the complementarity problem. Math. Oper. Res. 24, 529-543 (1999)
-
(1999)
Math. Oper. Res.
, vol.24
, pp. 529-543
-
-
Jiang, H.1
-
13
-
-
0000004762
-
New error bounds for the linear complementarity problem
-
Luo, Z.-Q., Mangasarian, O.L., Ren, J., Solodov, M.V.: New error bounds for the linear complementarity problem. Math. Oper. Res. 19, 880-892 (1994)
-
(1994)
Math. Oper. Res.
, vol.19
, pp. 880-892
-
-
Luo, Z.-Q.1
Mangasarian, O.L.2
Ren, J.3
Solodov, M.V.4
-
14
-
-
0001170028
-
A posteriori error bounds for the linearly-constrained variational inequality problem
-
Pang, J.-S.: A posteriori error bounds for the linearly-constrained variational inequality problem. Math. Oper. Res. 12, 474-484 (1987)
-
(1987)
Math. Oper. Res.
, vol.12
, pp. 474-484
-
-
Pang, J.-S.1
-
15
-
-
0001052352
-
Some continuity properties of polyhedral multifunctions
-
Robinson, S.M.: Some continuity properties of polyhedral multifunctions. Math. Program. Study 14, 206-214 (1981)
-
(1981)
Math. Program. Study
, vol.14
, pp. 206-214
-
-
Robinson, S.M.1
-
16
-
-
0016985417
-
Monotone operators and the proximal point algorithm
-
Rockafellar, R.T.: Monotone operators and the proximal point algorithm. SIAM J. Control Optimization 14, 877-898 (1976)
-
(1976)
SIAM J. Control Optimization
, vol.14
, pp. 877-898
-
-
Rockafellar, R.T.1
-
17
-
-
0032207259
-
High order infeasible-interior-point methods for sufficient linear complementarity problems
-
Stoer, J., Wechs, M., Mizuno, S.: High order infeasible-interior-point methods for sufficient linear complementarity problems. Math. Oper. Res. 23, 832-862 (1998)
-
(1998)
Math. Oper. Res.
, vol.23
, pp. 832-862
-
-
Stoer, J.1
Wechs, M.2
Mizuno, S.3
-
18
-
-
0000116396
-
Modified Newton methods for solving a semismooth reformulation of monotone complementarity problems
-
Yamashita, N., Fukushima M.: Modified Newton methods for solving a semismooth reformulation of monotone complementarity problems. Math. Program. 76, 469-491 (1997)
-
(1997)
Math. Program.
, vol.76
, pp. 469-491
-
-
Yamashita, N.1
Fukushima, M.2
-
19
-
-
0034353734
-
The proximal point algorithm with genuine superlinear convergence for the monotone complementarity problem
-
Yamashita, N., Fukushima M.: The proximal point algorithm with genuine superlinear convergence for the monotone complementarity problem. SIAM J. Optim. 11, 364-379 (2001)
-
(2001)
SIAM J. Optim.
, vol.11
, pp. 364-379
-
-
Yamashita, N.1
Fukushima, M.2
|