-
2
-
-
0000755084
-
-
L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, Nature (London) 397, 594 (1999).
-
(1999)
Nature (London)
, vol.397
, pp. 594
-
-
Hau, L.V.1
Harris, S.E.2
Dutton, Z.3
Behroozi, C.H.4
-
3
-
-
3543099592
-
-
A. Imamoglu, H. Schmidt, G. Woods, and M. Deutsch, Phys. Rev. Lett. 79, 1467 (1997).
-
(1997)
Phys. Rev. Lett.
, vol.79
, pp. 1467
-
-
Imamoglu, A.1
Schmidt, H.2
Woods, G.3
Deutsch, M.4
-
4
-
-
0033328124
-
-
S. Rebic, S. M. Tan, A. S. Parkins, and D. F. Walls, J. Opt. B: Quantum Semiclassical Opt. 1, 490 (1999).
-
(1999)
J. Opt. B: Quantum Semiclassical Opt.
, vol.1
, pp. 490
-
-
Rebic, S.1
Tan, S.M.2
Parkins, A.S.3
Walls, D.F.4
-
7
-
-
20844453516
-
-
Since there is only one atom, the Doppler broadening in gaseous USL systems, or the inhomogeneous broadening in solid-state systems (e.g., 5GHz in Pr:YSO) due to the host is not an issue anymore, while the remaining uncertainty in the exact level positions can be much smaller than the cavity resonance width.
-
Since there is only one atom, the Doppler broadening in gaseous USL systems, or the inhomogeneous broadening in solid-state systems (e.g., 5GHz in Pr:YSO) due to the host is not an issue anymore, while the remaining uncertainty in the exact level positions can be much smaller than the cavity resonance width.
-
-
-
-
8
-
-
0037074242
-
-
A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. R. Hemmer, Phys. Rev. Lett. 88, 023602 (2002).
-
(2002)
Phys. Rev. Lett.
, vol.88
, pp. 023602
-
-
Turukhin, A.V.1
Sudarshanam, V.S.2
Shahriar, M.S.3
Musser, J.A.4
Ham, B.S.5
Hemmer, P.R.6
-
9
-
-
41349121323
-
-
J. Vuckovic, M. Loncar, H. Mabuchi, and A. Scherer, Phys. Rev. E 65, 016608 (2001).
-
(2001)
Phys. Rev. E
, vol.65
, pp. 016608
-
-
Vuckovic, J.1
Loncar, M.2
Mabuchi, H.3
Scherer, A.4
-
10
-
-
41349097910
-
-
M. Soljacic, E. Lidorikis, L. V. Hau, and J. D. Joannopoulos, Phys. Rev. E 71, 026602 (2005).
-
(2005)
Phys. Rev. E
, vol.71
, pp. 026602
-
-
Soljacic, M.1
Lidorikis, E.2
Hau, L.V.3
Joannopoulos, J.D.4
-
11
-
-
84860954373
-
-
In our numerics, we model the USL atom as a small-area object (2.4× 10-4 λRES2), with large highly-dispersive susceptibility. The required dispersion shape is obtained with two absorption lines sandwiching a gain line; such a shape closely resembles a typical USL dispersion.
-
In our numerics, we model the USL atom as a small-area object (2.4× 10-4 λRES2), with large highly-dispersive susceptibility. The required dispersion shape is obtained with two absorption lines sandwiching a gain line; such a shape closely resembles a typical USL dispersion.
-
-
-
-
14
-
-
20844463178
-
-
The fairly broad-bandwidth of our pulses of interest masks influence of the atom-cavity coupling effects on the resonant frequencies; thus, a semiclassical analysis is appropriate.
-
The fairly broad-bandwidth of our pulses of interest masks influence of the atom-cavity coupling effects on the resonant frequencies; thus, a semiclassical analysis is appropriate.
-
-
-
-
15
-
-
20844434303
-
-
Ph. D. thesis, Harvard University
-
Z. Dutton, Ph. D. thesis, Harvard University, 2002.
-
(2002)
-
-
Dutton, Z.1
|