-
2
-
-
11544343614
-
-
J. M. Ǵrard, B. Sermage, B. Gayral, B. Legrand, E. Costard, and V. Thierry-Mieg, Phys. Rev. Lett. 81, 1110 (1998).
-
(1998)
Phys. Rev. Lett.
, vol.81
, pp. 1110
-
-
Ǵrard, J.M.1
Sermage, B.2
Gayral, B.3
Legrand, B.4
Costard, E.5
Thierry-Mieg, V.6
-
3
-
-
4043062769
-
-
V. A. Haisler, A. I. Toropov, A. K. Bakarov, O. R. Bajutova, I. A. Derebezov, A. K. Kalagin, M. M. Kachanova, N. B. Kuzmin, A. S. Medvedev, and A. S. Suranov, J. Appl. Phys. 96, 1289 (2004).
-
(2004)
J. Appl. Phys.
, vol.96
, pp. 1289
-
-
Haisler, V.A.1
Toropov, A.I.2
Bakarov, A.K.3
Bajutova, O.R.4
Derebezov, I.A.5
Kalagin, A.K.6
Kachanova, M.M.7
Kuzmin, N.B.8
Medvedev, A.S.9
Suranov, A.S.10
-
4
-
-
9144260766
-
-
J. P. Reithmaier, G. Sek, A. Loffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, Nature (London) 432, 197 (2004).
-
(2004)
Nature (London)
, vol.432
, pp. 197
-
-
Reithmaier, J.P.1
Sek, G.2
Loffler, A.3
Hofmann, C.4
Kuhn, S.5
Reitzenstein, S.6
Keldysh, L.V.7
Kulakovskii, V.D.8
Reinecke, T.L.9
Forchel, A.10
-
5
-
-
9244245742
-
-
T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, Nature (London) 432, 200 (2004).
-
(2004)
Nature (London)
, vol.432
, pp. 200
-
-
Yoshie, T.1
Scherer, A.2
Hendrickson, J.3
Khitrova, G.4
Gibbs, H.M.5
Rupper, G.6
Ell, C.7
Shchekin, O.B.8
Deppe, D.G.9
-
6
-
-
20844438658
-
-
quant-ph/0411076
-
E. Peter, P. Senellart, D. Martrou, A. Lemàtre, and J. Bloch, arXiv: quant-ph/0411076 (2004).
-
(2004)
-
-
Peter, E.1
Senellart, P.2
Martrou, D.3
Lemàtre, A.4
Bloch, J.5
-
8
-
-
0033556947
-
-
T. Rivera, J.-P. Debray, J. M. Geŕard, B. Legrand, L. Manin-Ferlazzo, and J. L. Oudar, Appl. Phys. Lett. 74, 911 (1999).
-
(1999)
Appl. Phys. Lett.
, vol.74
, pp. 911
-
-
Rivera, T.1
Debray, J.-P.2
Geŕard, J.M.3
Legrand, B.4
Manin-Ferlazzo, L.5
Oudar, J.L.6
-
9
-
-
0028530059
-
-
R. P. Stanley, R. Houdre, U. Oesterle, M. Gailhanou, and M. Ilegems, Appl. Phys. Lett. 65, 1883 (1994).
-
(1994)
Appl. Phys. Lett.
, vol.65
, pp. 1883
-
-
Stanley, R.P.1
Houdre, R.2
Oesterle, U.3
Gailhanou, M.4
Ilegems, M.5
-
11
-
-
3042635865
-
-
One possible effect of reducing the dimensionality from the planar structure to the pillars is to eliminate the scattering of light from the cavity mode into nonradiative modes outside the lightcone. However, this effect is likely to be negligibly small considering the low disorder in high-quality microcavities, such as the present sample, as shown by the following estimate. 1D simulations of disorder scattering from the cavity mode into leaky modes of the Bragg stacks show a reduction in Q value from 30 000 to ~10 000 only for very large thickness fluctuations of ~30 monolayers, which correspond to 10% of the Bragg layer thickness. However a full two-dimensional analysis needs to be performed to be able to definitely exclude this possibility as a contributory factor to the higher Q values found in the pillar structures relative to the planar cavity. We note that Ph. Lalanne, J. P. Hugonin, and J. M. Gerard, Appl. Phys. Lett. 84, 4726 (2004) have reported theoretical simulations showing oscillations in Q with diameter which can reach values higher than for a planar cavity. However, these results are valid only for pillars of submicron size and for low Q cavities (<1000), and so are not applicable to the present findings.
-
(2004)
Appl. Phys. Lett.
, vol.84
, pp. 4726
-
-
Lalanne, Ph.1
Hugonin, J.P.2
Gerard, J.M.3
-
12
-
-
20844441394
-
-
note
-
There is a close analogy with the averaging of interface fluctuations in quantum wells over the size of the electron wave function, thus leading to narrower exciton lines than expected from the size of likely well width fluctuations.
-
-
-
|