메뉴 건너뛰기




Volumn 61, Issue 2, 2005, Pages 474-480

The full EM algorithm for the MLEs of QTL effects and positions and their estimated variances in multiple-interval mapping

Author keywords

Backcross; EM algorithm; Intercross; Maximum likelihood estimate; Multiple interval mapping; Observed Fisher information; QTL mapping

Indexed keywords

BIOINFORMATICS; COMPUTATIONAL EFFICIENCY; FISHER INFORMATION MATRIX; MAPPING; MATRIX ALGEBRA;

EID: 20744455651     PISSN: 0006341X     EISSN: None     Source Type: Journal    
DOI: 10.1111/j.1541-0420.2005.00327.x     Document Type: Article
Times cited : (15)

References (20)
  • 1
    • 0035671699 scopus 로고    scopus 로고
    • Bayesian methods for quantitative trait loci mapping based on model selection: Approximate analysis using the Bayesian information criterion
    • Ball, R. D. (2001). Bayesian methods for quantitative trait loci mapping based on model selection: Approximate analysis using the Bayesian information criterion. Genetics 159, 1351-1364.
    • (2001) Genetics , vol.159 , pp. 1351-1364
    • Ball, R.D.1
  • 2
    • 0036433546 scopus 로고    scopus 로고
    • A model selection approach for the identification of quantitative trait loci in experimental crosses
    • Broman, K. W. and Speed, T. P. (2002). A model selection approach for the identification of quantitative trait loci in experimental crosses. Journal of the Royal Statistical Society, Series B 64, 641-656.
    • (2002) Journal of the Royal Statistical Society, Series B , vol.64 , pp. 641-656
    • Broman, K.W.1    Speed, T.P.2
  • 3
    • 0033879555 scopus 로고    scopus 로고
    • The use of a genetic algorithm for simultaneous mapping of multiple interacting quantitative trait loci
    • Carlborg, Ö., Andersson, L., and Kinghorn, B. (2000). The use of a genetic algorithm for simultaneous mapping of multiple interacting quantitative trait loci. Genetics 155, 2003-2010.
    • (2000) Genetics , vol.155 , pp. 2003-2010
    • Carlborg, Ö.1    Andersson, L.2    Kinghorn, B.3
  • 5
    • 0002425233 scopus 로고
    • Multiple linear regression analysis of RELP data sets used in mapping QTLs
    • T. Helentjaris and B. Burr (eds), Cold Spring Harbor, New York: Cold Spring Harbor Laboratory
    • Cowen, N. M. (1989). Multiple linear regression analysis of RELP data sets used in mapping QTLs. In Development and Application of Molecular Markers to Problems in Plant Genetics, T. Helentjaris and B. Burr (eds), 113-116. Cold Spring Harbor, New York: Cold Spring Harbor Laboratory.
    • (1989) Development and Application of Molecular Markers to Problems in Plant Genetics , pp. 113-116
    • Cowen, N.M.1
  • 6
    • 0018115641 scopus 로고
    • Assessing the accuracy of the maximum likelihood estimator: Observed versus expected Fisher information
    • Efron, B. and Hinkley, D. V. (1978). Assessing the accuracy of the maximum likelihood estimator: Observed versus expected Fisher information. Biometrika 65, 457-487.
    • (1978) Biometrika , vol.65 , pp. 457-487
    • Efron, B.1    Hinkley, D.V.2
  • 7
    • 0027247860 scopus 로고
    • Interval mapping of multiple quantitative trait loci
    • Jansen, R. C. (1993). Interval mapping of multiple quantitative trait loci. Genetics 135, 205-211.
    • (1993) Genetics , vol.135 , pp. 205-211
    • Jansen, R.C.1
  • 8
    • 0033790225 scopus 로고    scopus 로고
    • On the differences between maximum likelihood and regression interval mapping in the analysis of quantitative trait loci
    • Kao, C. H. (2000). On the differences between maximum likelihood and regression interval mapping in the analysis of quantitative trait loci. Genetics 156, 855-865.
    • (2000) Genetics , vol.156 , pp. 855-865
    • Kao, C.H.1
  • 9
    • 0030948878 scopus 로고    scopus 로고
    • General formulas for obtaining the MLEs and the asymptotic variance-covariance matrix in mapping quantitative trait loci when using the EM algorithm
    • Kao, C. H. and Zeng, Z. B. (1997). General formulas for obtaining the MLEs and the asymptotic variance-covariance matrix in mapping quantitative trait loci when using the EM algorithm. Biometrics 53, 653-665.
    • (1997) Biometrics , vol.53 , pp. 653-665
    • Kao, C.H.1    Zeng, Z.B.2
  • 10
    • 0036199370 scopus 로고    scopus 로고
    • Modeling epistasis of quantitative trait loci using Cockerham's model
    • Kao, C. H. and Zeng, Z. B. (2002). Modeling epistasis of quantitative trait loci using Cockerham's model. Genetics 160, 1243-1261.
    • (2002) Genetics , vol.160 , pp. 1243-1261
    • Kao, C.H.1    Zeng, Z.B.2
  • 11
    • 0032772555 scopus 로고    scopus 로고
    • Multiple interval mapping for quantitative trait loci
    • Kao, C. H., Zeng, Z. B., and Teasdale, R. D. (1999). Multiple interval mapping for quantitative trait loci. Genetics 152, 1203-1216.
    • (1999) Genetics , vol.152 , pp. 1203-1216
    • Kao, C.H.1    Zeng, Z.B.2    Teasdale, R.D.3
  • 12
    • 0028899938 scopus 로고
    • A nonparametric approach for mapping quantitative trait loci
    • Kruglyak, L. and Lander, E. S. (1995). A nonparametric approach for mapping quantitative trait loci. Genetics 139, 1421-1428.
    • (1995) Genetics , vol.139 , pp. 1421-1428
    • Kruglyak, L.1    Lander, E.S.2
  • 13
    • 0024508964 scopus 로고
    • Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps
    • Lander, E. S. and Botstein, D. (1989). Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 121, 185-199.
    • (1989) Genetics , vol.121 , pp. 185-199
    • Lander, E.S.1    Botstein, D.2
  • 14
    • 0001044972 scopus 로고
    • Finding the observed information matrix when using the EM algorithm
    • Louis, T. A. (1982). Finding the observed information matrix when using the EM algorithm. Journal of the Royal Statistical Society, Series B 44, 226-233.
    • (1982) Journal of the Royal Statistical Society, Series B , vol.44 , pp. 226-233
    • Louis, T.A.1
  • 15
    • 0000380150 scopus 로고
    • Genetic models to estimate additive and non-additive effects of marker-associated QTL using multiple regression techniques
    • Moreno-Gonzalez, J. (1992). Genetic models to estimate additive and non-additive effects of marker-associated QTL using multiple regression techniques. Theoretical and Applied Genetics 85, 435-444.
    • (1992) Theoretical and Applied Genetics , vol.85 , pp. 435-444
    • Moreno-Gonzalez, J.1
  • 16
    • 0035014774 scopus 로고    scopus 로고
    • Detection of closely linked multiple quantitative trait loci using a genetic algorithm
    • Nakamichi, R., Ukai, Y., and Kishino, H. (2001). Detection of closely linked multiple quantitative trait loci using a genetic algorithm. Genetics 158, 463-475.
    • (2001) Genetics , vol.158 , pp. 463-475
    • Nakamichi, R.1    Ukai, Y.2    Kishino, H.3
  • 17
    • 0029836368 scopus 로고    scopus 로고
    • A Bayesian approach to detect quantitative trait loci using Markov chain Monte Carlo
    • Satagopan, J. M., Yandell, B. S., Newton, M. A., and Osborn, T. C. (1996). A Bayesian approach to detect quantitative trait loci using Markov chain Monte Carlo. Genetics 144, 805-816.
    • (1996) Genetics , vol.144 , pp. 805-816
    • Satagopan, J.M.1    Yandell, B.S.2    Newton, M.A.3    Osborn, T.C.4
  • 19
    • 0001854898 scopus 로고    scopus 로고
    • On the mapping of QTL by regression of phenotype on marker-type
    • Whittaker, J. C., Thompson, R., and Visscher, P. M. (1996). On the mapping of QTL by regression of phenotype on marker-type. Heredity 77, 23-32.
    • (1996) Heredity , vol.77 , pp. 23-32
    • Whittaker, J.C.1    Thompson, R.2    Visscher, P.M.3
  • 20
    • 0028224156 scopus 로고
    • Precision mapping of quantitative trait loci
    • Zeng, Z. B. (1994). Precision mapping of quantitative trait loci. Genetics 136, 1457-1468.
    • (1994) Genetics , vol.136 , pp. 1457-1468
    • Zeng, Z.B.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.