-
1
-
-
0002527268
-
Self-trapping of an electromagnetic field and bifurcation from the essential spectrum
-
C. A. Stuart, Self-trapping of an electromagnetic field and bifurcation from the essential spectrum, Arch. Rational Mech. Anal. 113 (1990) 65-96.
-
(1990)
Arch. Rational Mech. Anal.
, vol.113
, pp. 65-96
-
-
Stuart, C.A.1
-
2
-
-
0003405464
-
-
Applied Mathematical Sciences, Springer-Verlag, New York
-
C. Sulem and P.-L. Sulem, The Nonlinear Schrödinger Equation, Applied Mathematical Sciences, Vol. 139 (Springer-Verlag, New York, 1999).
-
(1999)
The Nonlinear Schrödinger Equation
, vol.139
-
-
Sulem, C.1
Sulem, P.-L.2
-
3
-
-
0039679600
-
The shadowing lemma for elliptic PDE
-
NATO Advanced Science Institutes Series F: Computer and Systems Sciences, Springer, Berlin
-
S. Angenent, The shadowing lemma for elliptic PDE, in Dynamics of Infinite-Dimensional Systems (Lisbon, 1986), NATO Advanced Science Institutes Series F: Computer and Systems Sciences, Vol. 37 (Springer, Berlin, 1987), pp. 7-22.
-
(1987)
Dynamics of Infinite-dimensional Systems (Lisbon, 1986)
, vol.37
, pp. 7-22
-
-
Angenent, S.1
-
4
-
-
0038622172
-
n
-
Quaderni, Scuola Normale Superiore, Pisa
-
n, in Nonlinear Analysis (Quaderni, Scuola Normale Superiore, Pisa, 1991), pp. 307-317.
-
(1991)
Nonlinear Analysis
, pp. 307-317
-
-
Rabinowitz, P.H.1
-
6
-
-
0000212150
-
On "multibump" bound states for certain semilinear elliptic equations
-
S. Alama and Y. Y. Li, On "multibump" bound states for certain semilinear elliptic equations, Indiana Univ. Math. J. 41 (1992) 983-1026.
-
(1992)
Indiana Univ. Math. J.
, vol.41
, pp. 983-1026
-
-
Alama, S.1
Li, Y.Y.2
-
7
-
-
44049114539
-
Existence of solutions for semilinear elliptic equations with indefinite linear part
-
S. Alama and Y. Y. Li, Existence of solutions for semilinear elliptic equations with indefinite linear part, J. Differential Equations 96 (1992) 89-115.
-
(1992)
J. Differential Equations
, vol.96
, pp. 89-115
-
-
Alama, S.1
Li, Y.Y.2
-
8
-
-
0032167164
-
On a semilinear Schrödinger equation with periodic potential
-
A. A. Pankov and K. Pflüger, On a semilinear Schrödinger equation with periodic potential, Nonlinear Anal. 33 (1998) 593-609.
-
(1998)
Nonlinear Anal.
, vol.33
, pp. 593-609
-
-
Pankov, A.A.1
Pflüger, K.2
-
9
-
-
0001691788
-
Generalized linking theorem with an application to a semilinear Schrödinger equation
-
W. Kryszewski and A. Szulkin, Generalized linking theorem with an application to a semilinear Schrödinger equation, Adv. Differential Equations 3 (1998) 441-472.
-
(1998)
Adv. Differential Equations
, vol.3
, pp. 441-472
-
-
Kryszewski, W.1
Szulkin, A.2
-
11
-
-
0039441081
-
On a nonlinear Schrödinger equation with periodic potential
-
T. Bartsch and Y. Ding, On a nonlinear Schrödinger equation with periodic potential, Math. Ann. 313 (1999) 15-37.
-
(1999)
Math. Ann.
, vol.313
, pp. 15-37
-
-
Bartsch, T.1
Ding, Y.2
-
13
-
-
0000830631
-
A variational approach to homoclinic orbits in Hamiltonian systems
-
V. Coti Zelati, I. Ekeland and É. Séré, A variational approach to homoclinic orbits in Hamiltonian systems, Math. Ann. 288 (1990) 133-160.
-
(1990)
Math. Ann.
, vol.288
, pp. 133-160
-
-
Zelati, V.C.1
Ekeland, I.2
Séré, É.3
-
14
-
-
51249165518
-
Existence of infinitely many homoclinic orbits in Hamiltonian systems
-
É. Séré, Existence of infinitely many homoclinic orbits in Hamiltonian systems, Math. Z. 209 (1992) 27-42.
-
(1992)
Math. Z.
, vol.209
, pp. 27-42
-
-
Séré, É.1
-
15
-
-
84968502322
-
Homoclinic orbits for second order Hamilto-nian systems possessing superquadratic potentials
-
V. Coti Zelati and P. H. Rabinowitz, Homoclinic orbits for second order Hamilto-nian systems possessing superquadratic potentials, J. Amer. Math. Soc. 4 (1991) 693-727.
-
(1991)
J. Amer. Math. Soc.
, vol.4
, pp. 693-727
-
-
Zelati, V.C.1
Rabinowitz, P.H.2
-
17
-
-
20644462284
-
A variational approach to multibump solutions of differential equations
-
Contemporary Mathematics, American Mathematical Society, Providence, RI
-
P. H. Rabinowitz, A variational approach to multibump solutions of differential equations, in Hamiltonian Dynamics and Celestial Mechanics (Seattle, WA, 1995), Contemporary Mathematics, Vol. 198 (American Mathematical Society, Providence, RI 1996), pp. 31-43.
-
(1996)
Hamiltonian Dynamics and Celestial Mechanics (Seattle, WA, 1995)
, vol.198
, pp. 31-43
-
-
Rabinowitz, P.H.1
-
20
-
-
0346289757
-
Nonlinear Schrödinger equations with steep potential well
-
T. Bartsch, A. Pankov and Z.-Q. Wang, Nonlinear Schrödinger equations with steep potential well, Commun. Contemp. Math. 3 (2001) 549-569.
-
(2001)
Commun. Contemp. Math.
, vol.3
, pp. 549-569
-
-
Bartsch, T.1
Pankov, A.2
Wang, Z.-Q.3
-
21
-
-
0242605015
-
Gluing approximate solutions of minimum type on the Nehari manifold
-
Proceedings of the USA-Chile Workshop on Nonlinear Analysis (Viña del Mar- Valparaiso, 2000), Proceedings of Conferences, Southwest Texas State University, San Marcos, TX
-
Y. Li and Z.-Q. Wang, Gluing approximate solutions of minimum type on the Nehari manifold, in Proceedings of the USA-Chile Workshop on Nonlinear Analysis (Viña del Mar- Valparaiso, 2000), Electronic Journal of Differential Equations, Proceedings of Conferences, Vol. 6 (Southwest Texas State University, San Marcos, TX, 2001), pp. 215-223.
-
(2001)
Electronic Journal of Differential Equations
, vol.6
, pp. 215-223
-
-
Li, Y.1
Wang, Z.-Q.2
-
22
-
-
0030376845
-
Multibump periodic motions of an infinite lattice of particles
-
G. Arioli, F. Gazzola and S. Terracini, Multibump periodic motions of an infinite lattice of particles, Math. Z. 223 (1996) 627-642.
-
(1996)
Math. Z.
, vol.223
, pp. 627-642
-
-
Arioli, G.1
Gazzola, F.2
Terracini, S.3
-
24
-
-
6344263972
-
On a periodic Schrödinger equation with nonlocal superlinear part
-
N. Ackermann, On a periodic Schrödinger equation with nonlocal superlinear part, Math. Z. 248 (2004) 423-443.
-
(2004)
Math. Z.
, vol.248
, pp. 423-443
-
-
Ackermann, N.1
-
25
-
-
0003915087
-
-
Applied Mathematical Sciences, Springer-Verlag, New York
-
J. Mawhin and M. Willem, Critical Point Theory and Hamiltonian Systems, Applied Mathematical Sciences, Vol. 74 (Springer-Verlag, New York, 1989).
-
(1989)
Critical Point Theory and Hamiltonian Systems
, vol.74
-
-
Mawhin, J.1
Willem, M.2
-
27
-
-
1642370360
-
On the number of nodal domains for eigenfunctions of elliptic differential operators
-
E. Müller-Pfeiffer, On the number of nodal domains for eigenfunctions of elliptic differential operators, J. London Math. Soc. 31(2) (1985) 91-100.
-
(1985)
J. London Math. Soc.
, vol.31
, Issue.2
, pp. 91-100
-
-
Müller-Pfeiffer, E.1
-
28
-
-
0035918638
-
Invariant sets of descending flow in critical point theory with applications to nonlinear differential equations
-
Z. Liu and J. Sun, Invariant sets of descending flow in critical point theory with applications to nonlinear differential equations, J. Differential Equations 172 (2001) 257-299.
-
(2001)
J. Differential Equations
, vol.172
, pp. 257-299
-
-
Liu, Z.1
Sun, J.2
-
29
-
-
0016092731
-
On the variational principle
-
I. Ekeland, On the variational principle, J. Math. Anal. Appl. 47 (1974) 324-353.
-
(1974)
J. Math. Anal. Appl.
, vol.47
, pp. 324-353
-
-
Ekeland, I.1
-
30
-
-
0004118642
-
-
Results in Mathematics and Related Areas, 3rd Series Springer-Verlag, Berlin
-
M. Struwe, Variational Methods, 3rd edn. Results in Mathematics and Related Areas, 3rd Series, Vol. 34 (Springer-Verlag, Berlin, 2000).
-
(2000)
Variational Methods, 3rd Edn.
, vol.34
-
-
Struwe, M.1
-
31
-
-
85030719142
-
The concentration-compactness principle in the calculus of variations. The locally compact case. II
-
P.-L. Lions, The concentration-compactness principle in the calculus of variations. The locally compact case. II, Ann. Inst. H. Poincaré Anal. Non Linéaire 1 (1984) 223-283.
-
(1984)
Ann. Inst. H. Poincaré Anal. Non Linéaire
, vol.1
, pp. 223-283
-
-
Lions, P.-L.1
|