-
2
-
-
84968515967
-
An improved eigenvalue corrector formula for solving Schrödinger's equation for central fields
-
W. Cooley An improved eigenvalue corrector formula for solving Schrödinger's equation for central fields Math. Comp. 15 1961 363 374
-
(1961)
Math. Comp.
, vol.15
, pp. 363-374
-
-
Cooley, W.1
-
3
-
-
0000981521
-
Practical points concerning the solution of the Schrödinger equation
-
J.M. Blatt Practical points concerning the solution of the Schrödinger equation J. Comput. Phys. 1 1967 382 396
-
(1967)
J. Comput. Phys.
, vol.1
, pp. 382-396
-
-
Blatt, J.M.1
-
4
-
-
0001401038
-
The numerical solution of coupled differential equations arising from the Schrödinger equation
-
A.C. Allison The numerical solution of coupled differential equations arising from the Schrödinger equation J. Comput. Phys. 6 1970 378 391
-
(1970)
J. Comput. Phys.
, vol.6
, pp. 378-391
-
-
Allison, A.C.1
-
5
-
-
0034392111
-
Exponentially-fitted Runge-Kutta fourth algebraic order methods for the numerical solution of the Schrödinger equation and related problems
-
P.S. Williams, and T.E. Simos Exponentially-fitted Runge-Kutta fourth algebraic order methods for the numerical solution of the Schrödinger equation and related problems Internat. J. Modern Phys. C 11 2000 785 807
-
(2000)
Internat. J. Modern Phys. C
, vol.11
, pp. 785-807
-
-
Williams, P.S.1
Simos, T.E.2
-
6
-
-
0002481902
-
Exponential-fitting methods for the numerical solution of the Schrödinger equation
-
A.D. Raptis, and A.C. Allison Exponential-fitting methods for the numerical solution of the Schrödinger equation Comput. Phys. Comm. 14 1978 1 5
-
(1978)
Comput. Phys. Comm.
, vol.14
, pp. 1-5
-
-
Raptis, A.D.1
Allison, A.C.2
-
7
-
-
0002792006
-
A Numerov-like scheme for the numerical solution of the Schrödinger equation in the deep continuum spectrum of energies
-
L.Gr. Ixaru, and M. Rizea A Numerov-like scheme for the numerical solution of the Schrödinger equation in the deep continuum spectrum of energies Comput. Phys. Comm. 19 1980 23 27
-
(1980)
Comput. Phys. Comm.
, vol.19
, pp. 23-27
-
-
Ixaru, L.Gr.1
Rizea, M.2
-
8
-
-
0020458747
-
Two-step methods for the numerical solution of the Schrödinger equation
-
A.D. Raptis Two-step methods for the numerical solution of the Schrödinger equation Computing 28 1982 373 378
-
(1982)
Computing
, vol.28
, pp. 373-378
-
-
Raptis, A.D.1
-
9
-
-
0021505273
-
A high order method for the numerical integration of the one-dimensional Schrödinger equation
-
J.R. Cash, and A.D. Raptis A high order method for the numerical integration of the one-dimensional Schrödinger equation Comput. Phys. Comm. 33 1984 299 304
-
(1984)
Comput. Phys. Comm.
, vol.33
, pp. 299-304
-
-
Cash, J.R.1
Raptis, A.D.2
-
10
-
-
0001752844
-
A variable step method for the numerical integration of the one-dimensional Schrödinger equation
-
A.D. Raptis, and J.R. Cash A variable step method for the numerical integration of the one-dimensional Schrödinger equation Comput. Phys. Comm. 36 1985 113 119
-
(1985)
Comput. Phys. Comm.
, vol.36
, pp. 113-119
-
-
Raptis, A.D.1
Cash, J.R.2
-
11
-
-
0002779398
-
Exponential and Bessel fitting methods for the numerical solution of the Schrödinger equation
-
A.D. Raptis, and J.R. Cash Exponential and Bessel fitting methods for the numerical solution of the Schrödinger equation Comput. Phys. Comm. 44 1987 95 103
-
(1987)
Comput. Phys. Comm.
, vol.44
, pp. 95-103
-
-
Raptis, A.D.1
Cash, J.R.2
-
12
-
-
0347069159
-
An eighth-order formula for the numerical integration of the one-dimensional Schrödinger equation
-
A.C. Allison, A.D. Raptis, and T.E. Simos An eighth-order formula for the numerical integration of the one-dimensional Schrödinger equation J. Comput. Phys. 97 1991 240 248
-
(1991)
J. Comput. Phys.
, vol.97
, pp. 240-248
-
-
Allison, A.C.1
Raptis, A.D.2
Simos, T.E.3
-
13
-
-
0002207932
-
Embedded methods for the numerical solution of the Schrödinger equation
-
G. Avdelas, and T.E. Simos Embedded methods for the numerical solution of the Schrödinger equation Comput. Math. Appl. 31 1996 85 102
-
(1996)
Comput. Math. Appl.
, vol.31
, pp. 85-102
-
-
Avdelas, G.1
Simos, T.E.2
-
14
-
-
0001160013
-
P-stable exponentially-fitted methods for the numerical integration of the Schrödinger equation
-
T.E. Simos P-stable exponentially-fitted methods for the numerical integration of the Schrödinger equation J. Comput. Phys. 148 1999 305 321
-
(1999)
J. Comput. Phys.
, vol.148
, pp. 305-321
-
-
Simos, T.E.1
-
15
-
-
14844288375
-
A new effective algorithm for the resonant state of a Schrödinger equation
-
Z. Wang A new effective algorithm for the resonant state of a Schrödinger equation Comput. Phys. Comm. 167 1 2005 1 6
-
(2005)
Comput. Phys. Comm.
, vol.167
, Issue.1
, pp. 1-6
-
-
Wang, Z.1
-
16
-
-
0013351743
-
A P-stable complete in phase Obrechkoff trigonometric fitted method for periodic initial-value problems
-
T.E. Simos A P-stable complete in phase Obrechkoff trigonometric fitted method for periodic initial-value problems Proc. Roy. Soc. London A 441 1993 283 289
-
(1993)
Proc. Roy. Soc. London a
, vol.441
, pp. 283-289
-
-
Simos, T.E.1
-
17
-
-
1842489378
-
An eighth-order two-step formula for the numerical integration of the one-dimensional Schrödinger equation
-
Z. Wang, and Y. Dai An eighth-order two-step formula for the numerical integration of the one-dimensional Schrödinger equation N. Math. J. Chin. Univ. (Suppl.) 12 2003 146 150
-
(2003)
N. Math. J. Chin. Univ. (Suppl.)
, vol.12
, pp. 146-150
-
-
Wang, Z.1
Dai, Y.2
-
18
-
-
1842529998
-
A twelfth-order four-step formula for the numerical integration of the one-dimensional Schrödinger equation
-
Z. Wang, and Y. Dai A twelfth-order four-step formula for the numerical integration of the one-dimensional Schrödinger equation Internat. J. Modern Phys. C 14 2003 1087 1105
-
(2003)
Internat. J. Modern Phys. C
, vol.14
, pp. 1087-1105
-
-
Wang, Z.1
Dai, Y.2
-
19
-
-
2542474478
-
A Mathematica program for the two-step twelfth-order method with multi-derivative for the numerical solution of a one-dimensional Schrödinger equation
-
Z. Wang, Y. Ge, Y. Dai, and D. Zhao A Mathematica program for the two-step twelfth-order method with multi-derivative for the numerical solution of a one-dimensional Schrödinger equation Comput. Phys. Comm. 160 1 2004 23 45
-
(2004)
Comput. Phys. Comm.
, vol.160
, Issue.1
, pp. 23-45
-
-
Wang, Z.1
Ge, Y.2
Dai, Y.3
Zhao, D.4
-
20
-
-
0013441423
-
On mechanical quadrature (Bulgarian French summary)
-
N. Obrechkoff On mechanical quadrature (Bulgarian French summary) Spisanie Bulgar. Akad. Nauk. 65 1942 191 289
-
(1942)
Spisanie Bulgar. Akad. Nauk.
, vol.65
, pp. 191-289
-
-
Obrechkoff, N.1
-
21
-
-
11144240962
-
A new high efficient and high accurate Obrechkoff four-step method for the periodic nonlinear undamped Duffing's equation
-
Y. Dai, Z. Wang, and D. Zhao A new high efficient and high accurate Obrechkoff four-step method for the periodic nonlinear undamped Duffing's equation Comput. Phys. Comm. 165 2 2005 110 126
-
(2005)
Comput. Phys. Comm.
, vol.165
, Issue.2
, pp. 110-126
-
-
Dai, Y.1
Wang, Z.2
Zhao, D.3
-
22
-
-
22244460505
-
An improved trigonometric fitted P-stable Obrechkoff method for periodic initial-value problems
-
in press
-
Z. Wang, D. Zhao, Y. Dai, D. Wu, An improved trigonometric fitted P-stable Obrechkoff method for periodic initial-value problems, Proc. Roy. Soc. London A (2005), in press
-
(2005)
Proc. Roy. Soc. London A
-
-
Wang, Z.1
Zhao, D.2
Dai, Y.3
Wu, D.4
-
23
-
-
15344347343
-
Importance of the first-order derivative formula in the Obrechkoff method
-
D. Zhao, Z. Wang, and Y. Dai Importance of the first-order derivative formula in the Obrechkoff method Comput. Phys. Comm. 167 2 2005 65 75
-
(2005)
Comput. Phys. Comm.
, vol.167
, Issue.2
, pp. 65-75
-
-
Zhao, D.1
Wang, Z.2
Dai, Y.3
-
25
-
-
77958409581
-
Symmetric multistep methods for periodic initial value problems
-
J.D. Lambert, and I.A. Watson Symmetric multistep methods for periodic initial value problems J. Inst. Math. Appl. 18 1976 189 202
-
(1976)
J. Inst. Math. Appl.
, vol.18
, pp. 189-202
-
-
Lambert, J.D.1
Watson, I.A.2
-
26
-
-
0013400018
-
On the solution of y′ = f(x, y) by a class of high accuracy difference formulae of low order
-
J.D. Lambert, and A.R. Mitchell On the solution of y′ = f(x, y) by a class of high accuracy difference formulae of low order Z. Angew. Math. Phys. 13 1962 223 232
-
(1962)
Z. Angew. Math. Phys.
, vol.13
, pp. 223-232
-
-
Lambert, J.D.1
Mitchell, A.R.2
|