메뉴 건너뛰기




Volumn 170, Issue 1, 2005, Pages 49-64

A trigonometrically-fitted one-step method with multi-derivative for the numerical solution to the one-dimensional Schrödinger equation

Author keywords

Numerov method; Obrechkoff method; P stable; Schr dinger equation; Single step method

Indexed keywords

ALGORITHMS; FUNCTIONS; INTEGRATED CIRCUITS; OPTIMIZATION; PROBLEM SOLVING; QUANTUM THEORY; RESONANCE;

EID: 20544467857     PISSN: 00104655     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.cpc.2005.01.018     Document Type: Article
Times cited : (23)

References (27)
  • 2
    • 84968515967 scopus 로고
    • An improved eigenvalue corrector formula for solving Schrödinger's equation for central fields
    • W. Cooley An improved eigenvalue corrector formula for solving Schrödinger's equation for central fields Math. Comp. 15 1961 363 374
    • (1961) Math. Comp. , vol.15 , pp. 363-374
    • Cooley, W.1
  • 3
    • 0000981521 scopus 로고
    • Practical points concerning the solution of the Schrödinger equation
    • J.M. Blatt Practical points concerning the solution of the Schrödinger equation J. Comput. Phys. 1 1967 382 396
    • (1967) J. Comput. Phys. , vol.1 , pp. 382-396
    • Blatt, J.M.1
  • 4
    • 0001401038 scopus 로고
    • The numerical solution of coupled differential equations arising from the Schrödinger equation
    • A.C. Allison The numerical solution of coupled differential equations arising from the Schrödinger equation J. Comput. Phys. 6 1970 378 391
    • (1970) J. Comput. Phys. , vol.6 , pp. 378-391
    • Allison, A.C.1
  • 5
    • 0034392111 scopus 로고    scopus 로고
    • Exponentially-fitted Runge-Kutta fourth algebraic order methods for the numerical solution of the Schrödinger equation and related problems
    • P.S. Williams, and T.E. Simos Exponentially-fitted Runge-Kutta fourth algebraic order methods for the numerical solution of the Schrödinger equation and related problems Internat. J. Modern Phys. C 11 2000 785 807
    • (2000) Internat. J. Modern Phys. C , vol.11 , pp. 785-807
    • Williams, P.S.1    Simos, T.E.2
  • 6
    • 0002481902 scopus 로고
    • Exponential-fitting methods for the numerical solution of the Schrödinger equation
    • A.D. Raptis, and A.C. Allison Exponential-fitting methods for the numerical solution of the Schrödinger equation Comput. Phys. Comm. 14 1978 1 5
    • (1978) Comput. Phys. Comm. , vol.14 , pp. 1-5
    • Raptis, A.D.1    Allison, A.C.2
  • 7
    • 0002792006 scopus 로고
    • A Numerov-like scheme for the numerical solution of the Schrödinger equation in the deep continuum spectrum of energies
    • L.Gr. Ixaru, and M. Rizea A Numerov-like scheme for the numerical solution of the Schrödinger equation in the deep continuum spectrum of energies Comput. Phys. Comm. 19 1980 23 27
    • (1980) Comput. Phys. Comm. , vol.19 , pp. 23-27
    • Ixaru, L.Gr.1    Rizea, M.2
  • 8
    • 0020458747 scopus 로고
    • Two-step methods for the numerical solution of the Schrödinger equation
    • A.D. Raptis Two-step methods for the numerical solution of the Schrödinger equation Computing 28 1982 373 378
    • (1982) Computing , vol.28 , pp. 373-378
    • Raptis, A.D.1
  • 9
    • 0021505273 scopus 로고
    • A high order method for the numerical integration of the one-dimensional Schrödinger equation
    • J.R. Cash, and A.D. Raptis A high order method for the numerical integration of the one-dimensional Schrödinger equation Comput. Phys. Comm. 33 1984 299 304
    • (1984) Comput. Phys. Comm. , vol.33 , pp. 299-304
    • Cash, J.R.1    Raptis, A.D.2
  • 10
    • 0001752844 scopus 로고
    • A variable step method for the numerical integration of the one-dimensional Schrödinger equation
    • A.D. Raptis, and J.R. Cash A variable step method for the numerical integration of the one-dimensional Schrödinger equation Comput. Phys. Comm. 36 1985 113 119
    • (1985) Comput. Phys. Comm. , vol.36 , pp. 113-119
    • Raptis, A.D.1    Cash, J.R.2
  • 11
    • 0002779398 scopus 로고
    • Exponential and Bessel fitting methods for the numerical solution of the Schrödinger equation
    • A.D. Raptis, and J.R. Cash Exponential and Bessel fitting methods for the numerical solution of the Schrödinger equation Comput. Phys. Comm. 44 1987 95 103
    • (1987) Comput. Phys. Comm. , vol.44 , pp. 95-103
    • Raptis, A.D.1    Cash, J.R.2
  • 12
    • 0347069159 scopus 로고
    • An eighth-order formula for the numerical integration of the one-dimensional Schrödinger equation
    • A.C. Allison, A.D. Raptis, and T.E. Simos An eighth-order formula for the numerical integration of the one-dimensional Schrödinger equation J. Comput. Phys. 97 1991 240 248
    • (1991) J. Comput. Phys. , vol.97 , pp. 240-248
    • Allison, A.C.1    Raptis, A.D.2    Simos, T.E.3
  • 13
    • 0002207932 scopus 로고    scopus 로고
    • Embedded methods for the numerical solution of the Schrödinger equation
    • G. Avdelas, and T.E. Simos Embedded methods for the numerical solution of the Schrödinger equation Comput. Math. Appl. 31 1996 85 102
    • (1996) Comput. Math. Appl. , vol.31 , pp. 85-102
    • Avdelas, G.1    Simos, T.E.2
  • 14
    • 0001160013 scopus 로고    scopus 로고
    • P-stable exponentially-fitted methods for the numerical integration of the Schrödinger equation
    • T.E. Simos P-stable exponentially-fitted methods for the numerical integration of the Schrödinger equation J. Comput. Phys. 148 1999 305 321
    • (1999) J. Comput. Phys. , vol.148 , pp. 305-321
    • Simos, T.E.1
  • 15
    • 14844288375 scopus 로고    scopus 로고
    • A new effective algorithm for the resonant state of a Schrödinger equation
    • Z. Wang A new effective algorithm for the resonant state of a Schrödinger equation Comput. Phys. Comm. 167 1 2005 1 6
    • (2005) Comput. Phys. Comm. , vol.167 , Issue.1 , pp. 1-6
    • Wang, Z.1
  • 16
    • 0013351743 scopus 로고
    • A P-stable complete in phase Obrechkoff trigonometric fitted method for periodic initial-value problems
    • T.E. Simos A P-stable complete in phase Obrechkoff trigonometric fitted method for periodic initial-value problems Proc. Roy. Soc. London A 441 1993 283 289
    • (1993) Proc. Roy. Soc. London a , vol.441 , pp. 283-289
    • Simos, T.E.1
  • 17
    • 1842489378 scopus 로고    scopus 로고
    • An eighth-order two-step formula for the numerical integration of the one-dimensional Schrödinger equation
    • Z. Wang, and Y. Dai An eighth-order two-step formula for the numerical integration of the one-dimensional Schrödinger equation N. Math. J. Chin. Univ. (Suppl.) 12 2003 146 150
    • (2003) N. Math. J. Chin. Univ. (Suppl.) , vol.12 , pp. 146-150
    • Wang, Z.1    Dai, Y.2
  • 18
    • 1842529998 scopus 로고    scopus 로고
    • A twelfth-order four-step formula for the numerical integration of the one-dimensional Schrödinger equation
    • Z. Wang, and Y. Dai A twelfth-order four-step formula for the numerical integration of the one-dimensional Schrödinger equation Internat. J. Modern Phys. C 14 2003 1087 1105
    • (2003) Internat. J. Modern Phys. C , vol.14 , pp. 1087-1105
    • Wang, Z.1    Dai, Y.2
  • 19
    • 2542474478 scopus 로고    scopus 로고
    • A Mathematica program for the two-step twelfth-order method with multi-derivative for the numerical solution of a one-dimensional Schrödinger equation
    • Z. Wang, Y. Ge, Y. Dai, and D. Zhao A Mathematica program for the two-step twelfth-order method with multi-derivative for the numerical solution of a one-dimensional Schrödinger equation Comput. Phys. Comm. 160 1 2004 23 45
    • (2004) Comput. Phys. Comm. , vol.160 , Issue.1 , pp. 23-45
    • Wang, Z.1    Ge, Y.2    Dai, Y.3    Zhao, D.4
  • 20
    • 0013441423 scopus 로고
    • On mechanical quadrature (Bulgarian French summary)
    • N. Obrechkoff On mechanical quadrature (Bulgarian French summary) Spisanie Bulgar. Akad. Nauk. 65 1942 191 289
    • (1942) Spisanie Bulgar. Akad. Nauk. , vol.65 , pp. 191-289
    • Obrechkoff, N.1
  • 21
    • 11144240962 scopus 로고    scopus 로고
    • A new high efficient and high accurate Obrechkoff four-step method for the periodic nonlinear undamped Duffing's equation
    • Y. Dai, Z. Wang, and D. Zhao A new high efficient and high accurate Obrechkoff four-step method for the periodic nonlinear undamped Duffing's equation Comput. Phys. Comm. 165 2 2005 110 126
    • (2005) Comput. Phys. Comm. , vol.165 , Issue.2 , pp. 110-126
    • Dai, Y.1    Wang, Z.2    Zhao, D.3
  • 22
    • 22244460505 scopus 로고    scopus 로고
    • An improved trigonometric fitted P-stable Obrechkoff method for periodic initial-value problems
    • in press
    • Z. Wang, D. Zhao, Y. Dai, D. Wu, An improved trigonometric fitted P-stable Obrechkoff method for periodic initial-value problems, Proc. Roy. Soc. London A (2005), in press
    • (2005) Proc. Roy. Soc. London A
    • Wang, Z.1    Zhao, D.2    Dai, Y.3    Wu, D.4
  • 23
    • 15344347343 scopus 로고    scopus 로고
    • Importance of the first-order derivative formula in the Obrechkoff method
    • D. Zhao, Z. Wang, and Y. Dai Importance of the first-order derivative formula in the Obrechkoff method Comput. Phys. Comm. 167 2 2005 65 75
    • (2005) Comput. Phys. Comm. , vol.167 , Issue.2 , pp. 65-75
    • Zhao, D.1    Wang, Z.2    Dai, Y.3
  • 25
    • 77958409581 scopus 로고
    • Symmetric multistep methods for periodic initial value problems
    • J.D. Lambert, and I.A. Watson Symmetric multistep methods for periodic initial value problems J. Inst. Math. Appl. 18 1976 189 202
    • (1976) J. Inst. Math. Appl. , vol.18 , pp. 189-202
    • Lambert, J.D.1    Watson, I.A.2
  • 26
    • 0013400018 scopus 로고
    • On the solution of y′ = f(x, y) by a class of high accuracy difference formulae of low order
    • J.D. Lambert, and A.R. Mitchell On the solution of y′ = f(x, y) by a class of high accuracy difference formulae of low order Z. Angew. Math. Phys. 13 1962 223 232
    • (1962) Z. Angew. Math. Phys. , vol.13 , pp. 223-232
    • Lambert, J.D.1    Mitchell, A.R.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.