메뉴 건너뛰기




Volumn 15, Issue 2, 2005, Pages 427-446

Best mean square prediction for moving averages

Author keywords

Discrete time series; Importance sampling; Non gaussian; Non invertible; Non minimum phase

Indexed keywords


EID: 20444486248     PISSN: 10170405     EISSN: None     Source Type: Journal    
DOI: None     Document Type: Conference Paper
Times cited : (7)

References (24)
  • 1
    • 0019031661 scopus 로고
    • Robust identification of a nonminimum phase system: Blind adjustment of linear equalizer in data communications
    • Benveniste, A., Goursat, M. and Roget, G. (1980). Robust identification of a nonminimum phase system: blind adjustment of linear equalizer in data communications. IEEE Trans. Automat. Control AC-25, 385-398.
    • (1980) IEEE Trans. Automat. Control , vol.AC-25 , pp. 385-398
    • Benveniste, A.1    Goursat, M.2    Roget, G.3
  • 3
    • 0035731935 scopus 로고    scopus 로고
    • Least absolute deviation estimation for all-pass time series models
    • Breidt, F. J., Davis, R. A. and Trindade, A. A. (2001). Least absolute deviation estimation for all-pass time series models. Ann. Statist. 29, 919-946.
    • (2001) Ann. Statist. , vol.29 , pp. 919-946
    • Breidt, F.J.1    Davis, R.A.2    Trindade, A.A.3
  • 5
    • 0029211044 scopus 로고
    • A new identification algorithm for allpass systems by higher-order statistics
    • Chi, C.-Y. and Kung, J.-Y. (1995). A new identification algorithm for allpass systems by higher-order statistics. Signal Processing 41, 239-256.
    • (1995) Signal Processing , vol.41 , pp. 239-256
    • Chi, C.-Y.1    Kung, J.-Y.2
  • 6
    • 0031187263 scopus 로고    scopus 로고
    • Parametric cumulant base phase estimation of 1-d and 2-d nonminimum phase systems by allpass filtering
    • Chien, H.-M., Yang, H.-L. and Chi, C.-Y. (1997). Parametric cumulant base phase estimation of 1-d and 2-d nonminimum phase systems by allpass filtering. IEEE Trans. Signal Processing 45, 1742-1762.
    • (1997) IEEE Trans. Signal Processing , vol.45 , pp. 1742-1762
    • Chien, H.-M.1    Yang, H.-L.2    Chi, C.-Y.3
  • 7
    • 0002254167 scopus 로고
    • On minimum entropy deconvolution
    • (Edited by D.F. Findley), Academic Press, New York
    • Donoho, D. (1981). On minimum entropy deconvolution. In Applied Time Series Analysis II (Edited by D.F. Findley), 565-608. Academic Press, New York.
    • (1981) Applied Time Series Analysis II , pp. 565-608
    • Donoho, D.1
  • 10
  • 11
    • 0019700620 scopus 로고
    • Zero memory nonlinear deconvolution
    • Godfrey, R. and Rocca, F. (1981). Zero memory nonlinear deconvolution. Geophysical Prospecting 29, 189-228.
    • (1981) Geophysical Prospecting , vol.29 , pp. 189-228
    • Godfrey, R.1    Rocca, F.2
  • 13
    • 0022151204 scopus 로고
    • Minimum-variance and maximum-likelihood deconvolution for non-causal channel models
    • Hsueh, A.-C. and Mendel, J. M. (1985). Minimum-variance and maximum-likelihood deconvolution for non-causal channel models. IEEE Trans. Geoscience and Remote Sensing 23, 797-808.
    • (1985) IEEE Trans. Geoscience and Remote Sensing , vol.23 , pp. 797-808
    • Hsueh, A.-C.1    Mendel, J.M.2
  • 14
    • 0034354276 scopus 로고    scopus 로고
    • Quasi-likelihood estimation of non-invertible moving average processes
    • Huang, J. and Pawitan, Y. (2000). Quasi-likelihood estimation of non-invertible moving average processes. Scand. J. Statist. 27, 689-702.
    • (2000) Scand. J. Statist. , vol.27 , pp. 689-702
    • Huang, J.1    Pawitan, Y.2
  • 15
    • 20444449691 scopus 로고
    • Lower bounds for nonlinear prediction error in moving average processes
    • Kanter, M. (1979). Lower bounds for nonlinear prediction error in moving average processes. Ann. Probab. 7, 128-138.
    • (1979) Ann. Probab. , vol.7 , pp. 128-138
    • Kanter, M.1
  • 16
    • 0000868884 scopus 로고
    • Deconvolution and estimation of transfer function phase and coefficients for nonGaussian linear processes
    • Lii, K.-S. and Rosenblatt, M. (1982). Deconvolution and estimation of transfer function phase and coefficients for nonGaussian linear processes. Ann. Statist. 10, 1195-1208.
    • (1982) Ann. Statist. , vol.10 , pp. 1195-1208
    • Lii, K.-S.1    Rosenblatt, M.2
  • 17
    • 38249008210 scopus 로고
    • An approximate maximum likelihood estimation for non-Gaussian non-minimum phase moving average processes
    • Lii, K.-S. and Rosenblatt, M. (1992). An approximate maximum likelihood estimation for non-Gaussian non-minimum phase moving average processes. J. Multivariate Anal. 43, 272-299.
    • (1992) J. Multivariate Anal. , vol.43 , pp. 272-299
    • Lii, K.-S.1    Rosenblatt, M.2
  • 18
    • 21344441899 scopus 로고    scopus 로고
    • Maximum likelihood estimation for nonGaussian nonminimum phase ARMA sequences
    • Lii, K.-S. and Rosenblatt, M. (1996). Maximum likelihood estimation for nonGaussian nonminimum phase ARMA sequences. Statist. Sinica 6, 1-22.
    • (1996) Statist. Sinica , vol.6 , pp. 1-22
    • Lii, K.-S.1    Rosenblatt, M.2
  • 19
    • 0018654768 scopus 로고
    • Minimum entropy deconvolution with an exponential transformation
    • Ooe, M. and Ulrych, T. J. (1979). Minimum entropy deconvolution with an exponential transformation. Geophysical Prospecting 27, 458-473.
    • (1979) Geophysical Prospecting , vol.27 , pp. 458-473
    • Ooe, M.1    Ulrych, T.J.2
  • 22
    • 0039719870 scopus 로고
    • Phase-sensitive deconvolution to model random processes, with special reference to astronomical data
    • (Edited by D. F. Findley), Academic Press, New York
    • Scargle, J. D. (1981). Phase-sensitive deconvolution to model random processes, with special reference to astronomical data. In Applied Time Series Analysis II (Edited by D. F. Findley), 549-564. Academic Press, New York.
    • (1981) Applied Time Series Analysis II , pp. 549-564
    • Scargle, J.D.1
  • 24
    • 0017961352 scopus 로고
    • Minimum entropy deconvolution
    • Wiggins, R. A. (1978). Minimum entropy deconvolution. Geoexploration 16, 21-35.
    • (1978) Geoexploration , vol.16 , pp. 21-35
    • Wiggins, R.A.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.