메뉴 건너뛰기




Volumn 5, Issue , 2004, Pages 1409-1412

Facial expression analysis by kernel eigenspace method based on class features (KEMC) using non-linear basis for separation of expression-classes

Author keywords

[No Author keywords available]

Indexed keywords

APPROXIMATION THEORY; FEATURE EXTRACTION; MAN MACHINE SYSTEMS; MAPPING; MAPS; VECTORS;

EID: 20444478695     PISSN: 15224880     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (11)

References (4)
  • 1
    • 0033335560 scopus 로고    scopus 로고
    • Facial individuality and expression analysis by eigenspace method based on class features or multiple discriminant analysis
    • T. Kurozumi, Y. Shinza, Y. Kenmochi, K. Kotani, "Facial individuality and expression analysis by eigenspace method based on class features or multiple discriminant analysis", Proc. of 1999 IEEE ICIP, Vol. 1, pp.648-652, 1999.
    • (1999) Proc. of 1999 IEEE ICIP , vol.1 , pp. 648-652
    • Kurozumi, T.1    Shinza, Y.2    Kenmochi, Y.3    Kotani, K.4
  • 2
    • 0347243182 scopus 로고    scopus 로고
    • Nonlinera component analysis as a kernel eigenvalue problem
    • B. Schölkopf, A. Smola and K. R. Müller, "Nonlinera Component Analysis as a Kernel Eigenvalue Problem", Neural Computation, vol. 10, pp. 1299-1319, 1998.
    • (1998) Neural Computation , vol.10 , pp. 1299-1319
    • Schölkopf, B.1    Smola, A.2    Müller, K.R.3
  • 3
    • 84905388890 scopus 로고    scopus 로고
    • Kernel eigenfaces vs. kernel fisher-faces: Face recognition using kernel methods
    • M. -H. Yang, "Kernel eigenfaces vs. kernel fisher-faces: face recognition using kernel methods", Proc. of Int'l Conf. on Automatic Face and Gesture Recognition, pp. 215-220(2002)
    • (2002) Proc. of Int'l Conf. on Automatic Face and Gesture Recognition , pp. 215-220
    • Yang, M.H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.