-
1
-
-
0003143423
-
Delay differential equation models for machine tool chatter
-
F. C. Moon, ed., Wiley, New York
-
Stépán, G., 1997, "Delay Differential Equation Models for Machine Tool Chatter," in Dynamics and Chaos in Manufacturing Processes, F. C. Moon, ed., Wiley, New York, 165-191.
-
(1997)
Dynamics and Chaos in Manufacturing Processes
, pp. 165-191
-
-
Stépán, G.1
-
2
-
-
0001480106
-
Active vibration control of distributed systems using delayed resonator with acceleration feedback
-
Olgac, N., Elmali, H., Hosek, M., and Renzulli, M., 1997, "Active Vibration Control of Distributed Systems Using Delayed Resonator With Acceleration Feedback," ASME J. Dyn. Syst., Meas., Control, 119, pp. 380-389.
-
(1997)
ASME J. Dyn. Syst., Meas., Control
, vol.119
, pp. 380-389
-
-
Olgac, N.1
Elmali, H.2
Hosek, M.3
Renzulli, M.4
-
3
-
-
0034541923
-
Control laws involving distributed time delays: Robustness of implementation
-
Chicago, IEEE, New York
-
Santos, O., and Mondié, S., 2000, "Control Laws Involving Distributed Time Delays: Robustness of Implementation," Proc. of Amer. Control Conf., Chicago, IEEE, New York, pp. 2479-2480.
-
(2000)
Proc. of Amer. Control Conf.
, pp. 2479-2480
-
-
Santos, O.1
Mondié, S.2
-
4
-
-
0002821614
-
Remote control of periodic robot motion
-
Zakopane, Springer, Wien
-
Insperger, T., and Stépán, G., 2000, "Remote Control of Periodic Robot Motion," Proc. of 13th Symp. on Theory and Practice of Robots and Manipulators, Zakopane, Springer, Wien, pp. 197-203.
-
(2000)
Proc. of 13th Symp. on Theory and Practice of Robots and Manipulators
, pp. 197-203
-
-
Insperger, T.1
Stépán, G.2
-
5
-
-
0034223127
-
Stability of the human respiratory control system I: Analysis' of a two-dimensional delay state-space model
-
Batzel, J. J., and Tran, H. T., 2000, "Stability of the Human Respiratory Control System I: Analysis' of a Two-Dimensional Delay State-Space Model," J. Math. Biol., 41, pp. 45-79.
-
(2000)
J. Math. Biol.
, vol.41
, pp. 45-79
-
-
Batzel, J.J.1
Tran, H.T.2
-
6
-
-
79958057143
-
The Kaldor-Kalecki model of business cycle as a two-dimensional dynamical system
-
Szydlowski, M., and Krawiec, A., 2001, "The Kaldor-Kalecki Model of Business Cycle as a Two-Dimensional Dynamical System," J. Nonlinear Math. Phys., 8, pp. 266-271.
-
(2001)
J. Nonlinear Math. Phys.
, vol.8
, pp. 266-271
-
-
Szydlowski, M.1
Krawiec, A.2
-
7
-
-
0035493311
-
Subcritical hopf bifurcation in the delay equation model for machine tool vibrations
-
Kalmár-Nagy, T., Stépán, G., and Moon, F. C., 2001, "Subcritical Hopf Bifurcation in the Delay Equation Model for Machine Tool Vibrations," Nonlinear Dyn., 26, pp. 121-142.
-
(2001)
Nonlinear Dyn.
, vol.26
, pp. 121-142
-
-
Kalmár-Nagy, T.1
Stépán, G.2
Moon, F.C.3
-
8
-
-
0039433298
-
Delay effects and differential delay equations in chemical kinetics
-
Epstein, I. R., 1992, "Delay Effects and Differential Delay Equations in Chemical Kinetics," Int. Rev. Phys. Chem., 11(1), pp. 135-160.
-
(1992)
Int. Rev. Phys. Chem.
, vol.11
, Issue.1
, pp. 135-160
-
-
Epstein, I.R.1
-
9
-
-
1842694910
-
Approximate state-space manifolds which attract solutions of systems of delay-differential equations
-
Roussel, M. R., 1998, "Approximate State-Space Manifolds Which Attract Solutions of Systems of Delay-Differential Equations," J. Chem. Phys., 109(19), pp. 8154-8160.
-
(1998)
J. Chem. Phys.
, vol.109
, Issue.19
, pp. 8154-8160
-
-
Roussel, M.R.1
-
10
-
-
0004033107
-
DDE-BIFTOOL: A matlab package for bifurcation analysis of delay differential equations
-
Department of Computer Science, K. U. Leuven, Leuven, Belgium
-
Engelborghs, K., 2000, "DDE-BIFTOOL: A Matlab Package for Bifurcation Analysis of Delay Differential Equations," Tech. Rep. TW-305, Department of Computer Science, K. U. Leuven, Leuven, Belgium. Available from http://www.cs.kuleuven.ac.be/koen/delay/ddebiftool.shtml
-
(2000)
Tech. Rep.
, vol.TW-305
-
-
Engelborghs, K.1
-
11
-
-
0039708213
-
-
Ph.D. Dissertation, Dept. of Computer Science, K. U. Leuven, Leuven, Belgium
-
Engelborghs, K., 2000, "Numerical Bifurcation Analysis of Delay Differential Equations," Ph.D. Dissertation, Dept. of Computer Science, K. U. Leuven, Leuven, Belgium.
-
(2000)
Numerical Bifurcation Analysis of Delay Differential Equations
-
-
Engelborghs, K.1
-
12
-
-
0005042142
-
Numerical solution of delay differential equations by uniform corrections to an implicit Runge-Kutta method
-
Bellen, A., and Zennaro, M., 1985, "Numerical Solution of Delay Differential Equations by Uniform Corrections to an Implicit Runge-Kutta Method," Numer. Math., 47, pp. 301-316.
-
(1985)
Numer. Math.
, vol.47
, pp. 301-316
-
-
Bellen, A.1
Zennaro, M.2
-
13
-
-
0016103004
-
Highly stable multistep method for retarded differential equations
-
Cryer, C. W., 1974, "Highly Stable Multistep Method for Retarded Differential Equations," SIAM (Soc. Ind. Appl. Math.) J. Numer. Anal., 11(4), pp. 788-797.
-
(1974)
SIAM (Soc. Ind. Appl. Math.) J. Numer. Anal.
, vol.11
, Issue.4
, pp. 788-797
-
-
Cryer, C.W.1
-
14
-
-
0003492055
-
-
Springer-Verlag, New York
-
Hale, J. K., and Lunel, S. V., 1993, Introduction to Functional Differential Equations, Springer-Verlag, New York.
-
(1993)
Introduction to Functional Differential Equations
-
-
Hale, J.K.1
Lunel, S.V.2
-
15
-
-
0003687337
-
-
Springer-Verlag, New York
-
Diekmann, O., Oils, S. V., Lunel, S. V., and Walther, H., 1995, Delay Equations: Functional-, Complex-, and Nonlinear Analysis, Springer-Verlag, New York.
-
(1995)
Delay Equations: Functional-, Complex-, and Nonlinear Analysis
-
-
Diekmann, O.1
Oils, S.V.2
Lunel, S.V.3
Walther, H.4
-
16
-
-
0842292216
-
Harmonic balance in delay-differential equations
-
Macdonald, N., 1995, "Harmonic Balance in Delay-Differential Equations," J. Sound Vib., 186(4), pp. 649-656.
-
(1995)
J. Sound Vib.
, vol.186
, Issue.4
, pp. 649-656
-
-
Macdonald, N.1
-
17
-
-
1842644522
-
Josephson junction with delayed feedback
-
Gronbech-Jensen, N., Blackburn, J. A., Huberman, B. O., and Smith, H. J. T., 1992, "Josephson Junction With Delayed Feedback," Phys. Lett. A, 172, pp. 131-140.
-
(1992)
Phys. Lett. A
, vol.172
, pp. 131-140
-
-
Gronbech-Jensen, N.1
Blackburn, J.A.2
Huberman, B.O.3
Smith, H.J.T.4
-
18
-
-
0001106289
-
Global bifurcation of periodic solutions to some autonomous differential delay equations
-
Saupe, D., 1983, "Global Bifurcation of Periodic Solutions to Some Autonomous Differential Delay Equations," Appl. Math. Comput., 13, pp. 185-211.
-
(1983)
Appl. Math. Comput.
, vol.13
, pp. 185-211
-
-
Saupe, D.1
-
19
-
-
1842694912
-
The Galerkin method for the approximation of almost periodic solutions of functional differential equations
-
Layton, W., 1986, "The Galerkin Method for the Approximation of Almost Periodic Solutions of Functional Differential Equations," Funkcial. Ekvac., 29, pp. 19-29.
-
(1986)
Funkcial. Ekvac.
, vol.29
, pp. 19-29
-
-
Layton, W.1
-
20
-
-
0002787211
-
Applications of perturbation methods to tool chatter dynamics
-
F. C. Moon, ed., Wiley, New York
-
Nayfeh, A. H., Chin, C., and Pratt, J., 1997, "Applications of Perturbation Methods to Tool Chatter Dynamics," Dynamics and Chaos in Manufacturing Processes, F. C. Moon, ed., Wiley, New York, 193-213.
-
(1997)
Dynamics and Chaos in Manufacturing Processes
, pp. 193-213
-
-
Nayfeh, A.H.1
Chin, C.2
Pratt, J.3
-
21
-
-
0023419943
-
Nonlinear structural vibrations involving a time delay in damping
-
Plaut, R. H., and Hseih, J. C., 1987, "Nonlinear Structural Vibrations Involving a Time Delay in Damping," J. Sound Vib., 117(3), pp. 497-510.
-
(1987)
J. Sound Vib.
, vol.117
, Issue.3
, pp. 497-510
-
-
Plaut, R.H.1
Hseih, J.C.2
-
22
-
-
0032048711
-
Resonances of a harmonically forced duffing oscillator with time delay state feedback
-
Hu, H. Y., Dowell, E. H., and Virgin, L. N., 1998, "Resonances of a Harmonically Forced Duffing Oscillator With Time Delay State Feedback," Nonlinear Dyn., 15, pp. 311-327.
-
(1998)
Nonlinear Dyn.
, vol.15
, pp. 311-327
-
-
Hu, H.Y.1
Dowell, E.H.2
Virgin, L.N.3
-
23
-
-
0035493290
-
The response of a parametrically excited van der Pol oscillator to a time delay state feedback
-
Maccari, A., 2001, "The response of a parametrically excited van der Pol oscillator to a time delay state feedback," Nonlinear Dyn., 26, pp. 105-119.
-
(2001)
Nonlinear Dyn.
, vol.26
, pp. 105-119
-
-
Maccari, A.1
-
24
-
-
21844486044
-
Complex dynamics and multi-stability in a damped harmonic oscillator with delayed negative feedback
-
Campbell, S. A., Bélair, J., Ohira, T., and Milton, J., 1995, "Complex Dynamics and Multi-Stability in a Damped Harmonic Oscillator With Delayed Negative Feedback," Chaos, 5(4), pp. 640-645.
-
(1995)
Chaos
, vol.5
, Issue.4
, pp. 640-645
-
-
Campbell, S.A.1
Bélair, J.2
Ohira, T.3
Milton, J.4
-
25
-
-
0035791690
-
A unified framework for the study of periodic solutions of nonlinear delay differential equations
-
Pittsburgh, ASME, New York
-
Fofana, M. S., 2001, "A Unified Framework for the Study of Periodic Solutions of Nonlinear Delay Differential Equations," Proc. of DETC'01, ASME 2001 Des. Engrg. Tech. Conf., and Comput. Inform. Engrg. Conf., Pittsburgh, ASME, New York, pp. 1-20.
-
(2001)
Proc. of DETC'01, ASME 2001 Des. Engrg. Tech. Conf., and Comput. Inform. Engrg. Conf.
, pp. 1-20
-
-
Fofana, M.S.1
-
26
-
-
0033130661
-
Hopf bifurcation of time-delay Lienard equations
-
Xu, J., and Lu, Q. S., 1999, "Hopf bifurcation of time-delay Lienard equations," Int. J. Bifurcation Chaos Appl. Sci. Eng., 9(5), pp. 939-951.
-
(1999)
Int. J. Bifurcation Chaos Appl. Sci. Eng.
, vol.9
, Issue.5
, pp. 939-951
-
-
Xu, J.1
Lu, Q.S.2
-
27
-
-
0035435275
-
Dimensional reduction for nonlinear time-delayed systems composed of stiff and soft substructures
-
Wang, Z. H., and Hu, H. Y., 2001, "Dimensional Reduction for Nonlinear Time-Delayed Systems Composed of Stiff and Soft Substructures," Nonlinear Dyn., 25, pp. 317-331.
-
(2001)
Nonlinear Dyn.
, vol.25
, pp. 317-331
-
-
Wang, Z.H.1
Hu, H.Y.2
-
28
-
-
0000840165
-
Normal forms for retarded functional differential equations and applications to Bogdanov-Takens singularity
-
Faria, T., and Magalhaes, L. T., 1995, "Normal Forms for Retarded Functional Differential Equations and Applications to Bogdanov-Takens Singularity," J. Diff. Eqns., 122, pp. 201-224.
-
(1995)
J. Diff. Eqns.
, vol.122
, pp. 201-224
-
-
Faria, T.1
Magalhaes, L.T.2
-
29
-
-
0000840164
-
Normal forms for retarded functional differential equations with parameters and applications to hopf bifurcation
-
Faria, T., and Magalhaes, L. T., 1995, "Normal Forms for Retarded Functional Differential Equations With Parameters and Applications to Hopf Bifurcation," J. Diff. Eqns., 122, pp. 181-200.
-
(1995)
J. Diff. Eqns.
, vol.122
, pp. 181-200
-
-
Faria, T.1
Magalhaes, L.T.2
-
30
-
-
21444455502
-
Normal forms for periodic retarded functional differential equations
-
Faria, T., 1997, "Normal Forms for Periodic Retarded Functional Differential Equations," Proc. - R. Soc. Edinburgh, Sect. A: Math., 127, pp. 21-46.
-
(1997)
Proc. - R. Soc. Edinburgh, Sect. A: Math.
, vol.127
, pp. 21-46
-
-
Faria, T.1
-
31
-
-
0036922219
-
Multiple scales without center Manifold reductions for delay differential equations near hopf bifurcations
-
Das, S. L., and Chatterjee, A., 2002, "Multiple Scales Without Center Manifold Reductions for Delay Differential Equations Near Hopf Bifurcations," Nonlinear Dyn., 30, pp. 323-335.
-
(2002)
Nonlinear Dyn.
, vol.30
, pp. 323-335
-
-
Das, S.L.1
Chatterjee, A.2
-
32
-
-
0037210549
-
Stability of up-milling and down-milling, part 1: Alternative analytical methods
-
Insperger, T., Mann, B. P., Stépán, G., and Bayly, P. V., 2003, "Stability of Up-Milling and Down-Milling, Part 1: Alternative Analytical Methods," Int. J. Mach. Tools Manuf., 43, pp. 25-34.
-
(2003)
Int. J. Mach. Tools Manuf.
, vol.43
, pp. 25-34
-
-
Insperger, T.1
Mann, B.P.2
Stépán, G.3
Bayly, P.V.4
-
33
-
-
0038399830
-
Stability of interrupted cutting by temporal finite element analysis
-
Bayly, P. V., Halley, J. E., Mann, B. P., and Davies, M. A., 2003, "Stability of Interrupted Cutting by Temporal Finite Element Analysis," ASME J. Manuf. Sci. Eng., 125, pp. 220-225.
-
(2003)
ASME J. Manuf. Sci. Eng.
, vol.125
, pp. 220-225
-
-
Bayly, P.V.1
Halley, J.E.2
Mann, B.P.3
Davies, M.A.4
-
34
-
-
0037145313
-
Semi-discretization method for delayed systems
-
Insperger, T., and Stépán, G., 2002, "Semi- Discretization Method for Delayed Systems," Int. J. Numer. Methods Eng., 55, pp. 503-518.
-
(2002)
Int. J. Numer. Methods Eng.
, vol.55
, pp. 503-518
-
-
Insperger, T.1
Stépán, G.2
-
35
-
-
1842644543
-
On the characteristic roots of linear constant-coefficient DDE's
-
Dec 23-26, Guwahati
-
Wahi, P., and Chatterjee, A., 2002, "On the Characteristic Roots of Linear Constant-Coefficient DDE's," Proc. of 47th Congress of Indian Society of Theoretical and Applied Mechanics, Dec 23-26, Guwahati, pp. 234-241.
-
(2002)
Proc. of 47th Congress of Indian Society of Theoretical and Applied Mechanics
, pp. 234-241
-
-
Wahi, P.1
Chatterjee, A.2
-
36
-
-
1642580774
-
Computing the characteristic roots for delay differential equations
-
Breda, D., Maset, S., and Vermiglio, R., 2004, "Computing the Characteristic Roots for Delay Differential Equations," IMA Journal of Numerical Analysis, 24, pp. 1-19.
-
(2004)
IMA Journal of Numerical Analysis
, vol.24
, pp. 1-19
-
-
Breda, D.1
Maset, S.2
Vermiglio, R.3
-
37
-
-
0038016911
-
On stability of LMS methods and characteristic roots of delay differential equations
-
Engelborghs, K., and Roose, D., 2002, "On Stability of LMS Methods and Characteristic Roots of Delay Differential Equations," SIAM (Soc. Ind. Appl. Math.) J. Numer. Anal., 40(2), pp. 629-650.
-
(2002)
SIAM (Soc. Ind. Appl. Math.) J. Numer. Anal.
, vol.40
, Issue.2
, pp. 629-650
-
-
Engelborghs, K.1
Roose, D.2
-
38
-
-
0141830923
-
Analysis of a system of linear delay differential equations
-
Asl, F. M., and Ulsoy, A. G., 2003, "Analysis of a system of linear delay differential equations," ASME I. Dyn. Syst., Meas., Control, 125, pp. 215-223.
-
(2003)
ASME I. Dyn. Syst., Meas., Control
, vol.125
, pp. 215-223
-
-
Asl, F.M.1
Ulsoy, A.G.2
-
40
-
-
0345358435
-
Direct method implementation for the stability analysis of multiple time delayed systems
-
IEEE, New York
-
Sipahi, R., and Olgac, N., 2003, "Direct Method Implementation for the Stability Analysis of Multiple Time Delayed Systems," Proc. of 2003 IEEE Conf. on Control Appl. IEEE, New York, Vol. 1, pp. 943-948.
-
(2003)
Proc. of 2003 IEEE Conf. on Control Appl.
, vol.1
, pp. 943-948
-
-
Sipahi, R.1
Olgac, N.2
-
41
-
-
0032624770
-
Robust stability test for dynamic systems with short delays by using pade approximation
-
Wang, Z., and Hu, H., 1999, "Robust Stability Test for Dynamic Systems With Short Delays by Using Pade Approximation," Nonlinear Dyn., 18, pp. 275-287.
-
(1999)
Nonlinear Dyn.
, vol.18
, pp. 275-287
-
-
Wang, Z.1
Hu, H.2
-
42
-
-
0001114217
-
Counting roots of the characteristic equation for linear delay-differential systems
-
Hassard, B. D., 1997, "Counting Roots of the Characteristic Equation for Linear Delay-Differential Systems," J. Diff. Eqns., 136, pp. 222-235.
-
(1997)
J. Diff. Eqns.
, vol.136
, pp. 222-235
-
-
Hassard, B.D.1
|