-
1
-
-
4244059802
-
-
A. Rosato, K.J. Strandburg, F. Prinz, and R.H. Swendsen, Phys. Rev. Lett. 58, 1038 (1987); J.B. Knight, H. M. Jaeger, and S.R. Nagel, ibid 70, 3728 (1993); O. Zik, D. Levine, S. G. Shtrikman, and J. Stavans, ibid 73, 644 (1994); S. B. Savage and C. K. K. Lun, J. Fluid Mech. 189, 311 (1988); H.A. Makse, S. Havlin, P. R. King, and H. E. Stanley, Nature (London) 386, 379 (1997).
-
(1987)
Phys. Rev. Lett.
, vol.58
, pp. 1038
-
-
Rosato, A.1
Strandburg, K.J.2
Prinz, F.3
Swendsen, R.H.4
-
2
-
-
5544305929
-
-
A. Rosato, K.J. Strandburg, F. Prinz, and R.H. Swendsen, Phys. Rev. Lett. 58, 1038 (1987); J.B. Knight, H. M. Jaeger, and S.R. Nagel, ibid 70, 3728 (1993); O. Zik, D. Levine, S. G. Shtrikman, and J. Stavans, ibid 73, 644 (1994); S. B. Savage and C. K. K. Lun, J. Fluid Mech. 189, 311 (1988); H.A. Makse, S. Havlin, P. R. King, and H. E. Stanley, Nature (London) 386, 379 (1997).
-
(1993)
Phys. Rev. Lett.
, vol.70
, pp. 3728
-
-
Knight, J.B.1
Jaeger, H.M.2
Nagel, S.R.3
-
3
-
-
0000725128
-
-
A. Rosato, K.J. Strandburg, F. Prinz, and R.H. Swendsen, Phys. Rev. Lett. 58, 1038 (1987); J.B. Knight, H. M. Jaeger, and S.R. Nagel, ibid 70, 3728 (1993); O. Zik, D. Levine, S. G. Shtrikman, and J. Stavans, ibid 73, 644 (1994); S. B. Savage and C. K. K. Lun, J. Fluid Mech. 189, 311 (1988); H.A. Makse, S. Havlin, P. R. King, and H. E. Stanley, Nature (London) 386, 379 (1997).
-
(1994)
Phys. Rev. Lett.
, vol.73
, pp. 644
-
-
Zik, O.1
Levine, D.2
Shtrikman, S.G.3
Stavans, J.4
-
4
-
-
33751180194
-
-
A. Rosato, K.J. Strandburg, F. Prinz, and R.H. Swendsen, Phys. Rev. Lett. 58, 1038 (1987); J.B. Knight, H. M. Jaeger, and S.R. Nagel, ibid 70, 3728 (1993); O. Zik, D. Levine, S. G. Shtrikman, and J. Stavans, ibid 73, 644 (1994); S. B. Savage and C. K. K. Lun, J. Fluid Mech. 189, 311 (1988); H.A. Makse, S. Havlin, P. R. King, and H. E. Stanley, Nature (London) 386, 379 (1997).
-
(1988)
J. Fluid Mech.
, vol.189
, pp. 311
-
-
Savage, S.B.1
Lun, C.K.K.2
-
5
-
-
0030949393
-
-
A. Rosato, K.J. Strandburg, F. Prinz, and R.H. Swendsen, Phys. Rev. Lett. 58, 1038 (1987); J.B. Knight, H. M. Jaeger, and S.R. Nagel, ibid 70, 3728 (1993); O. Zik, D. Levine, S. G. Shtrikman, and J. Stavans, ibid 73, 644 (1994); S. B. Savage and C. K. K. Lun, J. Fluid Mech. 189, 311 (1988); H.A. Makse, S. Havlin, P. R. King, and H. E. Stanley, Nature (London) 386, 379 (1997).
-
(1997)
Nature (London)
, vol.386
, pp. 379
-
-
Makse, H.A.1
Havlin, S.2
King, P.R.3
Stanley, H.E.4
-
6
-
-
11344280393
-
-
This might be the first form of granular segregation ever noted in a scientific paper; A. Schoklitsch, Akad. Wiss. 142, 343 (1933).
-
(1933)
Akad. Wiss.
, vol.142
, pp. 343
-
-
Schoklitsch, A.1
-
7
-
-
0037593427
-
-
The armour layer has often been ascribed to selective erosion [e.g., R. Bettess and A. Frangipane, J. Hydraul. Res. 41, 179 (2003)], but field data pointing to the importance of granular segregation has been known for a long time [e.g., L. B. Leopold, M.G. Wolman, and J. P. Miller, Fluvial Processes in Ceomorphology (W. H. Freeman and Co., San Francisco, 1964), Chap. 7].
-
(2003)
J. Hydraul. Res.
, vol.41
, pp. 179
-
-
Bettess, R.1
Frangipane, A.2
-
8
-
-
11344290590
-
-
(W. H. Freeman and Co., San Francisco), Chap. 7
-
The armour layer has often been ascribed to selective erosion [e.g., R. Bettess and A. Frangipane, J. Hydraul. Res. 41, 179 (2003)], but field data pointing to the importance of granular segregation has been known for a long time [e.g., L. B. Leopold, M.G. Wolman, and J. P. Miller, Fluvial Processes in Ceomorphology (W. H. Freeman and Co., San Francisco, 1964), Chap. 7].
-
(1964)
Fluvial Processes in Ceomorphology
-
-
Leopold, L.B.1
Wolman, M.G.2
Miller, J.P.3
-
10
-
-
84956273455
-
-
E. Clement, J. Rajchenbach, and J. Duran, Europhys. Lett. 30, 7 (1995); F. Cantelaube and D. Bideau, ibid 30, 133 (1995); D.V. Khakhar, J. J. McCarthy, and J.M. Ottino, Phys. Fluids 9, 3600 (1997).
-
(1995)
Europhys. Lett.
, vol.30
, pp. 7
-
-
Clement, E.1
Rajchenbach, J.2
Duran, J.3
-
11
-
-
84956240967
-
-
E. Clement, J. Rajchenbach, and J. Duran, Europhys. Lett. 30, 7 (1995); F. Cantelaube and D. Bideau, ibid 30, 133 (1995); D.V. Khakhar, J. J. McCarthy, and J.M. Ottino, Phys. Fluids 9, 3600 (1997).
-
(1995)
Europhys. Lett.
, vol.30
, pp. 133
-
-
Cantelaube, F.1
Bideau, D.2
-
12
-
-
0002394317
-
-
E. Clement, J. Rajchenbach, and J. Duran, Europhys. Lett. 30, 7 (1995); F. Cantelaube and D. Bideau, ibid 30, 133 (1995); D.V. Khakhar, J. J. McCarthy, and J.M. Ottino, Phys. Fluids 9, 3600 (1997).
-
(1997)
Phys. Fluids
, vol.9
, pp. 3600
-
-
Khakhar, D.V.1
McCarthy, J.J.2
Ottino, J.M.3
-
15
-
-
11344295608
-
-
note
-
If air is the interstitial fluid instead of water, similar patterns form, and the sun patterns occur only in a narrow range of fill levels [6,7], just as in Fig. 2(c). This fact suggests that our analysis could be broadly applicable, in particular, to granular flows in air. [9] We use NIH Image, which computes the length of the boundary between dark and light areas in a given picture. To calibrate this computation, we use the picture of a moon pattern, for which p can be calculated analytically.
-
-
-
-
16
-
-
0036470745
-
-
N. Jain, J. M. Ottino, and R. M. Lueptow, Phys. Fluids 14, 572 (2002); D. Bonamy, F. Daviaud, and L. Laurent, ibid 14, 1666 (2002); K. M. Hill, G. Gioia, and V. V. Tola, Phys. Rev. Lett. 91, 064302 (2003).
-
(2002)
Phys. Fluids
, vol.14
, pp. 572
-
-
Jain, N.1
Ottino, J.M.2
Lueptow, R.M.3
-
17
-
-
0036571677
-
-
N. Jain, J. M. Ottino, and R. M. Lueptow, Phys. Fluids 14, 572 (2002); D. Bonamy, F. Daviaud, and L. Laurent, ibid 14, 1666 (2002); K. M. Hill, G. Gioia, and V. V. Tola, Phys. Rev. Lett. 91, 064302 (2003).
-
(2002)
Phys. Fluids
, vol.14
, pp. 1666
-
-
Bonamy, D.1
Daviaud, F.2
Laurent, L.3
-
18
-
-
0141453208
-
-
N. Jain, J. M. Ottino, and R. M. Lueptow, Phys. Fluids 14, 572 (2002); D. Bonamy, F. Daviaud, and L. Laurent, ibid 14, 1666 (2002); K. M. Hill, G. Gioia, and V. V. Tola, Phys. Rev. Lett. 91, 064302 (2003).
-
(2003)
Phys. Rev. Lett.
, vol.91
, pp. 064302
-
-
Hill, K.M.1
Gioia, G.2
Tola, V.V.3
-
19
-
-
85088491469
-
-
note
-
n to be constant on the segment Δx of the freezing (or thawing) line.
-
-
-
-
20
-
-
11344258338
-
-
note
-
In our model, a moon pattern becomes wavy when the interface between the black and the white beads, initially a circular arc, becomes undulated with a wavelength λ. Thus the volume of the white stripes is the same as the volume of the black stripes, regardless of the average composition of the mixture.
-
-
-
-
21
-
-
11344287412
-
-
note
-
To estimate w we write p = 2x + L + 2nΔx, where n is the number of stripes, and L = (π + 2θ)x secθ [Fig. 4(d)]. By substituting n = 2L/λ we arrive to the formula w = (p - 2x - L)/2L. From the picture of the pattern we obtain p, x, and L, and then estimate w using this formula. For a moon pattern p = 2x + L, and w = 0.
-
-
-
-
22
-
-
11344263557
-
-
note
-
u ∼ 5, which is in reasonable accord with the peak value of w measured in those experiments (Fig. 5).
-
-
-
-
23
-
-
85088491772
-
-
note
-
a > 1.
-
-
-
|