-
9
-
-
43949156705
-
-
L.A. Lugiato, Chaos Solitons Fractals 4, 1251 (1994); F.T. Arecchi, S. Boccaletti, and P. Ramazza, Phys. Rep. 318, 1 (1999).
-
(1994)
Chaos Solitons Fractals
, vol.4
, pp. 1251
-
-
Lugiato, L.A.1
-
10
-
-
0001908290
-
-
L.A. Lugiato, Chaos Solitons Fractals 4, 1251 (1994); F.T. Arecchi, S. Boccaletti, and P. Ramazza, Phys. Rep. 318, 1 (1999).
-
(1999)
Phys. Rep.
, vol.318
, pp. 1
-
-
Arecchi, F.T.1
Boccaletti, S.2
Ramazza, P.3
-
14
-
-
0033761260
-
-
D. Kip et al., Science 290, 495 (2000); D. Kip et al., J. Opt. Soc. Am. B 19, 502 (2002); J. Klinger, H. Martin, and Z. Chen, Opt. Lett. 26, 271 (2001).
-
(2000)
Science
, vol.290
, pp. 495
-
-
Kip, D.1
-
15
-
-
0001182462
-
-
D. Kip et al., Science 290, 495 (2000); D. Kip et al., J. Opt. Soc. Am. B 19, 502 (2002); J. Klinger, H. Martin, and Z. Chen, Opt. Lett. 26, 271 (2001).
-
(2002)
J. Opt. Soc. Am. B
, vol.19
, pp. 502
-
-
Kip, D.1
-
16
-
-
0000743794
-
-
D. Kip et al., Science 290, 495 (2000); D. Kip et al., J. Opt. Soc. Am. B 19, 502 (2002); J. Klinger, H. Martin, and Z. Chen, Opt. Lett. 26, 271 (2001).
-
(2001)
Opt. Lett.
, vol.26
, pp. 271
-
-
Klinger, J.1
Martin, H.2
Chen, Z.3
-
18
-
-
11344272619
-
-
More recently, our group had also studied, theoretically and experimentally, spontaneous pattern formation in cavities with spatially incoherent light See H. Buljan et al., Phys. Rev. E 68, 016616 (2003);
-
(2003)
Phys. Rev. E
, vol.68
, pp. 016616
-
-
Buljan, H.1
-
20
-
-
42749101002
-
-
D. Anderson et al., Phys. Rev. E 69, 025601 (2004). This paper analyzes the influence of the shape of the correlation function of the beam on the onset of the instability. For example, it shows that for the case of a rectangular power spectrum there is always an interval of spatial frequencies that are unstable, with no threshold. However, for Gaussian-Schell sources, e.g., a laser beam passing through a rotating diffuser, or a thermal source [see P. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University Press, New York, 1995), Chap. 5 and J. D. Farina et al., Opt. Commun. 32, 203 (1980)], there is always a threshold for incoherent MI, below which all spatial frequencies are stable [11,12].
-
(2004)
Phys. Rev. E
, vol.69
, pp. 025601
-
-
Anderson, D.1
-
21
-
-
42749101002
-
-
Cambridge University Press, New York, Chap. 5
-
D. Anderson et al., Phys. Rev. E 69, 025601 (2004). This paper analyzes the influence of the shape of the correlation function of the beam on the onset of the instability. For example, it shows that for the case of a rectangular power spectrum there is always an interval of spatial frequencies that are unstable, with no threshold. However, for Gaussian-Schell sources, e.g., a laser beam passing through a rotating diffuser, or a thermal source [see P. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University Press, New York, 1995), Chap. 5 and J. D. Farina et al., Opt. Commun. 32, 203 (1980)], there is always a threshold for incoherent MI, below which all spatial frequencies are stable [11,12].
-
(1995)
Optical Coherence and Quantum Optics
-
-
Mandel, P.1
Wolf, E.2
-
22
-
-
0018983738
-
-
D. Anderson et al., Phys. Rev. E 69, 025601 (2004). This paper analyzes the influence of the shape of the correlation function of the beam on the onset of the instability. For example, it shows that for the case of a rectangular power spectrum there is always an interval of spatial frequencies that are unstable, with no threshold. However, for Gaussian-Schell sources, e.g., a laser beam passing through a rotating diffuser, or a thermal source [see P. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University Press, New York, 1995), Chap. 5 and J. D. Farina et al., Opt. Commun. 32, 203 (1980)], there is always a threshold for incoherent MI, below which all spatial frequencies are stable [11,12].
-
(1980)
Opt. Commun.
, vol.32
, pp. 203
-
-
Farina, J.D.1
-
25
-
-
41349083316
-
-
H. Buljan et al., Phys. Rev. E 66, 035601 (2002).
-
(2002)
Phys. Rev. E
, vol.66
, pp. 035601
-
-
Buljan, H.1
-
26
-
-
3342975405
-
-
M. Segev et al., Phys. Rev. Lett. 73, 3211 (1994); M. Segev, M. Shih, and G. C. Valley, J. Opt. Soc. Am. B 13, 706 (1996).
-
(1994)
Phys. Rev. Lett.
, vol.73
, pp. 3211
-
-
Segev, M.1
-
27
-
-
0007151177
-
-
M. Segev et al., Phys. Rev. Lett. 73, 3211 (1994); M. Segev, M. Shih, and G. C. Valley, J. Opt. Soc. Am. B 13, 706 (1996).
-
(1996)
J. Opt. Soc. Am. B
, vol.13
, pp. 706
-
-
Segev, M.1
Shih, M.2
Valley, G.C.3
-
28
-
-
11344291744
-
-
[see D. Salerno et al., physics/0405119 v1]
-
In instantaneous nonlinearities at sufficiently high intensities, new frequencies are generated and the temporal spectrum broadens considerably. In some cases, this gives rise to spatiotemporal instabilities, which may have an extremely large bandwidth [see D. Salerno et al., physics/0405119 v1].
-
-
-
-
29
-
-
1342307967
-
-
H. Buljan et al., J. Opt. Soc. Am. B 21, 397 (2004); H. Buljan et al., Opt. Lett. 28, 1239 (2003).
-
(2004)
J. Opt. Soc. Am. B
, vol.21
, pp. 397
-
-
Buljan, H.1
-
30
-
-
0042309744
-
-
H. Buljan et al., J. Opt. Soc. Am. B 21, 397 (2004); H. Buljan et al., Opt. Lett. 28, 1239 (2003).
-
(2003)
Opt. Lett.
, vol.28
, pp. 1239
-
-
Buljan, H.1
|