-
3
-
-
37049108201
-
-
(c) Adams, J. M.; Pritchard, R. G.; Thomas, J. M. J. Chem. Soc., Chem. Commun. 1976, 358.
-
(1976)
J. Chem. Soc., Chem. Commun.
, vol.358
-
-
Adams, J.M.1
Pritchard, R.G.2
Thomas, J.M.3
-
6
-
-
0002464446
-
-
MacNicol, D. D., Toda, F., Bishop, R., Eds.; Pergamon: New York
-
(a) Herbstein, F. H. In Comprehensive Supramolecular Chemistry: MacNicol, D. D., Toda, F., Bishop, R., Eds.; Pergamon: New York, 1996; Vol. 6, pp 61-83.
-
(1996)
Comprehensive Supramolecular Chemistry
, vol.6
, pp. 61-83
-
-
Herbstein, F.H.1
-
10
-
-
19744375467
-
-
(which also cites earlier work dated 1897; Compt. Rend. 1897, 124, 855).
-
(1897)
Compt. Rend.
, vol.124
, pp. 855
-
-
-
13
-
-
16244376790
-
-
(a) Dale, S. H.; Elsegood, M. R. J.; Coombs, A. E. L. CrystEngComm 2004, 6, 328.
-
(2004)
CrystEngComm
, vol.6
, pp. 328
-
-
Dale, S.H.1
Elsegood, M.R.J.2
Coombs, A.E.L.3
-
15
-
-
19744368979
-
-
note
-
Of course, we cannot rule out the possibility that crystal growth conditions may exist that would favor the formation of the nonsolvate phase, but we refer here to those cases in which all reported attempts to prepare crystals have so far produced only solvate structures.
-
-
-
-
16
-
-
19744369360
-
-
note
-
Providing that conditions of temperature and pressure exist under which the solid undergoes complete loss of solvent molecules without the molecule of interest undergoing chemical degradation.
-
-
-
-
17
-
-
19744366961
-
-
note
-
An exception arises for some tunnel solvate structures, for which it may be possible to expel the solvent (guest) molecules with the host tunnel remaining structurally intact: a single crystal of the tunnel solvate would then yield a single crystal of the nonsolvate structure upon desolvation.
-
-
-
-
18
-
-
0001295640
-
-
(a) Harris, K. D. M.; Tremayne, M.; Lightfoot, P.; Bruce, P. G. J. Am. Chem. Soc. 1994, 116, 3543.
-
(1994)
J. Am. Chem. Soc.
, vol.116
, pp. 3543
-
-
Harris, K.D.M.1
Tremayne, M.2
Lightfoot, P.3
Bruce, P.G.4
-
19
-
-
0035805105
-
-
(b) Harris, K. D. M.; Tremayne, M.; Kariuki, B. M. Angew. Chem., Int. Ed. 2001, 40, 1626.
-
(2001)
Angew. Chem., Int. Ed.
, vol.40
, pp. 1626
-
-
Harris, K.D.M.1
Tremayne, M.2
Kariuki, B.M.3
-
22
-
-
19744374337
-
-
BTCA dihydrate was prepared by slow evaporation (over 5 days) of water from an aqueous solution of BTCA at ambient temperature. Dehydration was carried out by placing a polycrystalline sample of BTCA dihydrate in an oven at 100 °C for 3.5 h. Previous DTA and TGA studies indicate that these conditions give rise to complete dehydration of BTCA dihydrate (see: Fornies-Marquina, J. M.; Melendez, F.; Chanh, N. B. J. Therm. Anal. 1975, 7, 263).
-
(1975)
J. Therm. Anal.
, vol.7
, pp. 263
-
-
Fornies-Marquina, J.M.1
Melendez, F.2
Chanh, N.B.3
-
23
-
-
19744369173
-
-
note
-
13C NMR spectrum of BTCA is consistent with the crystal structure having more than one molecule in the asymmetric unit.
-
-
-
-
25
-
-
0031555419
-
-
(a) Kariuki, B. M.; Serrano-González, H.; Johnston, R. L.; Harris, K. D. M. Chem. Phys. Lett. 1997, 280, 189.
-
(1997)
Chem. Phys. Lett.
, vol.280
, pp. 189
-
-
Kariuki, B.M.1
Serrano-González, H.2
Johnston, R.L.3
Harris, K.D.M.4
-
26
-
-
0000066149
-
-
(b) Harris, K. D. M.; Johnston, R. L.; Kariuki, B. M. Acta Crystallogr. 1998, A54, 632.
-
(1998)
Acta Crystallogr.
, vol.A54
, pp. 632
-
-
Harris, K.D.M.1
Johnston, R.L.2
Kariuki, B.M.3
-
27
-
-
0141921679
-
-
(c) Habershon, S.; Harris, K. D. M.; Johnston, R. L. J. Comput. Chem. 2003, 24, 1766.
-
(2003)
Comput. Chem.
, vol.24
, pp. 1766
-
-
Habershon, S.1
Harris, K.D.M.2
Johnston, R.L.J.3
-
28
-
-
0346840576
-
-
Cardiff University and University of Birmingham
-
Habershon, S.; Turner, G. W.; Kariuki, B. M.; Cheung, E. Y.; Hanson, A.; Tedesco, E.; Albesa-Jové, D.; Chao, M. H.; Lanning, O. J.; Johnston, R. L.; Harris, K. D. M. EAGER; Cardiff University and University of Birmingham, 2004.
-
(2004)
EAGER
-
-
Habershon, S.1
Turner, G.W.2
Kariuki, B.M.3
Cheung, E.Y.4
Hanson, A.5
Tedesco, E.6
Albesa-Jové, D.7
Chao, M.H.8
Lanning, O.J.9
Johnston, R.L.10
Harris, K.D.M.11
-
29
-
-
19744371433
-
-
note
-
3}are required to define the position, orientation, and conformation of each molecule). The GA calculation involved the evolution of 80 generations for a population of 100 structures, with 25 mating operations and 12 mutation operations carried out per generation. The best structure solution was taken as the starting structural model for Rietveld refinement.
-
-
-
-
30
-
-
19744364359
-
-
note
-
p = 4.03%; 3824 profile points: 180 refined variables.
-
-
-
-
31
-
-
0344545210
-
-
Los Alamos Laboratory Report No. LA-UR-86-748
-
Larson, A. C.; Von Dreele, R. B. GSAS; Los Alamos Laboratory Report No. LA-UR-86-748, 1987.
-
(1987)
GSAS
-
-
Larson, A.C.1
Von Dreele, R.B.2
-
32
-
-
19744363540
-
-
note
-
2(8) linkage to a B molecule that is attached to the periphery of an adjacent AC chain. These B⋯B interactions provide a cross-linking between adjacent AC chains, and the arrangement of cross-linked AC chains extends as a two-dimensional slab through the crystal (parallel to the (101) plane: Figure 3b). All hydrogen bonding occurs within a slab of this type, and there is no hydrogen bonding between adjacent slabs. Adjacent slabs interact through van der Waals interactions (note the complementary shapes of the surfaces of adjacent slabs).
-
-
-
|