-
1
-
-
0010951054
-
Difference method for the solution one problem of the theory dispersive waves
-
G.M. Amiraliyev Difference method for the solution one problem of the theory dispersive waves USSR Diff. Equat. 26 1990 2146-2154
-
(1990)
USSR Diff. Equat.
, vol.26
, pp. 2146-2154
-
-
Amiraliyev, G.M.1
-
2
-
-
0010952169
-
A uniformly convergent finite difference method for a singularly perturbed initial value problem
-
(English Edition)
-
G.M. Amiraliyev H. Duru A uniformly convergent finite difference method for a singularly perturbed initial value problem Appl. Math. Mech. (English Edition) 20 1999 379-387
-
(1999)
Appl. Math. Mech.
, vol.20
, pp. 379-387
-
-
Amiraliyev, G.M.1
Duru, H.2
-
3
-
-
0242583632
-
A uniformly convergent difference method for the periodical boundary value problem
-
G.M. Amiraliyev H. Duru A uniformly convergent difference method for the periodical boundary value problem Comput. Math. Appl. 46 2003 695-703
-
(2003)
Comput. Math. Appl.
, vol.46
, pp. 695-703
-
-
Amiraliyev, G.M.1
Duru, H.2
-
7
-
-
19644370535
-
Parametrized singularly perturbed boundary value problems
-
M. Feckan Parametrized singularly perturbed boundary value problems J. Math. Anal. Appl. 188 1994 426-435
-
(1994)
J. Math. Anal. Appl.
, vol.188
, pp. 426-435
-
-
Feckan, M.1
-
8
-
-
19644365738
-
Convergence of the iterative process to the solution of the boundary problem with the parameter
-
A. Gulle H. Duru Convergence of the iterative process to the solution of the boundary problem with the parameter Trans. Acad. Sci. Azerb., Ser. Phys. Tech. Math. Sci. 18 1998 34-40
-
(1998)
Trans. Acad. Sci. Azerb., Ser. Phys. Tech. Math. Sci.
, vol.18
, pp. 34-40
-
-
Gulle, A.1
Duru, H.2
-
9
-
-
19644384289
-
Monotone iterations for differential problems
-
T. Jankowski Monotone iterations for differential problems Math. Notes, Miscolc 2 2001 31-38
-
(2001)
Math. Notes, Miscolc
, vol.2
, pp. 31-38
-
-
Jankowski, T.1
-
10
-
-
0009823117
-
Monotone iterations for differential equations with a parameter
-
T. Jankowski V. Lakshmikantham Monotone iterations for differential equations with a parameter J. Appl. Math. Stoch. Anal. 10 1997 273-278
-
(1997)
J. Appl. Math. Stoch. Anal.
, vol.10
, pp. 273-278
-
-
Jankowski, T.1
Lakshmikantham, V.2
-
11
-
-
17744413437
-
A hybrid difference schemes on a Shishkin mesh for linear convection-diffusion problems
-
T. Linß M. Stynes A hybrid difference schemes on a Shishkin mesh for linear convection-diffusion problems Appl. Numer. Math. 31 1999 255-270
-
(1999)
Appl. Numer. Math.
, vol.31
, pp. 255-270
-
-
Linß, T.1
Stynes, M.2
-
14
-
-
84984049167
-
A constructive theorem of existence and uniqueness for problem y′ = f(x, y, λ), y(a) = α, y(b) = β
-
T. Pomentale A constructive theorem of existence and uniqueness for problem y′ = f (x, y, λ), y(a) = α, y(b) = β, Z. Angew. Math. Mech. 56 1976 387-388
-
(1976)
Z. Angew. Math. Mech.
, vol.56
, pp. 387-388
-
-
Pomentale, T.1
-
15
-
-
19644388993
-
On the investigation of some non-linear boundary value problems with parameters
-
M. Ronto T. Csikos-Marinets On the investigation of some non-linear boundary value problems with parameters Math. Notes, Miscolc 1 2000 157-166
-
(2000)
Math. Notes, Miscolc
, vol.1
, pp. 157-166
-
-
Ronto, M.1
Csikos-Marinets, T.2
-
16
-
-
0003455090
-
-
Springer Series in Computational Mathematics, Springer, Berlin
-
H.G. Roos, M. Stynes, L. Tobiska, Numerical Methods for Singularly Perturbed Differential Equations, Springer Series in Computational Mathematics, vol. 24, Springer, Berlin, 1996.
-
(1996)
Numerical Methods for Singularly Perturbed Differential Equations
, vol.24
-
-
Roos, H.G.1
Stynes, M.2
Tobiska, L.3
-
17
-
-
19644370747
-
Nonlinear boundary value problem for second order differential equations depending on a parameter
-
S. Stanek Nonlinear boundary value problem for second order differential equations depending on a parameter Math. Slovaca 47 1997 439-449
-
(1997)
Math. Slovaca
, vol.47
, pp. 439-449
-
-
Stanek, S.1
-
18
-
-
0346830823
-
Uber die Differentialgleichung deren Losungskurve durch zwei gegebene Punkte hindurchgehen soll
-
K. Zawischa Uber die Differentialgleichung deren Losungskurve durch zwei gegebene Punkte hindurchgehen soll Monatsh. Math. Phys. 37 1930 103-124
-
(1930)
Monatsh. Math. Phys.
, vol.37
, pp. 103-124
-
-
Zawischa, K.1
|