메뉴 건너뛰기




Volumn 12, Issue 7, 2004, Pages 827-836

Identification of sensor faults on turbofan engines using pattern recognition techniques

Author keywords

Adaptive model; Aircraft engines; Diagnostics; Gas turbines; Pattern recognition; Sensor faults

Indexed keywords

ADAPTIVE CONTROL SYSTEMS; ALGORITHMS; COMPUTER SIMULATION; IDENTIFICATION (CONTROL SYSTEMS); PATTERN RECOGNITION; TURBOFAN ENGINES;

EID: 1942530661     PISSN: 09670661     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.conengprac.2003.09.011     Document Type: Article
Times cited : (40)

References (21)
  • 1
    • 0032180137 scopus 로고    scopus 로고
    • Classification of radial compressor faults using pattern recognition techniques
    • Aretakis N. Mathioudakis K. Classification of radial compressor faults using pattern recognition techniques Control Engineering Practice 6 1998 1217-1223
    • (1998) Control Engineering Practice , vol.6 , pp. 1217-1223
    • Aretakis, N.1    Mathioudakis, K.2
  • 2
    • 0033075242 scopus 로고    scopus 로고
    • Fuzzy-model-based parity equations for fault isolation
    • Balle P. Fuzzy-model-based parity equations for fault isolation Control Engineering Practice 7 1999 261-270
    • (1999) Control Engineering Practice , vol.7 , pp. 261-270
    • Balle, P.1
  • 7
    • 0031644999 scopus 로고    scopus 로고
    • A unified geometric approach to process and sensor fault identification and reconstruction: The unidimensional fault case
    • Dunia R. Qin S. A unified geometric approach to process and sensor fault identification and reconstruction: The unidimensional fault case Computers in Chemical Engineering 22 1997 927-943
    • (1997) Computers in Chemical Engineering , vol.22 , pp. 927-943
    • Dunia, R.1    Qin, S.2
  • 8
    • 0032049479 scopus 로고    scopus 로고
    • Joint diagnosis of process and sensor faults using principal component analysis
    • Dunia R. Qin S. Joint diagnosis of process and sensor faults using principal component analysis Control Engineering Practice 6 1998 457-469
    • (1998) Control Engineering Practice , vol.6 , pp. 457-469
    • Dunia, R.1    Qin, S.2
  • 9
    • 0030241088 scopus 로고    scopus 로고
    • A pattern recognition-artificial neural networks based model for signal validation in nuclear power plants
    • Fantoni P. Mazzola A. A pattern recognition-artificial neural networks based model for signal validation in nuclear power plants Annals of Nuclear Energy 23 13 1996 1069-1076
    • (1996) Annals of Nuclear Energy , vol.23 , Issue.13 , pp. 1069-1076
    • Fantoni, P.1    Mazzola, A.2
  • 11
    • 0031148143 scopus 로고    scopus 로고
    • Supervision, fault detection and fault diagnosis methods-an introduction
    • Isermann R. Supervision, fault detection and fault diagnosis methods-an introduction Control Engineering Practice 5 5 1997 639-652
    • (1997) Control Engineering Practice , vol.5 , Issue.5 , pp. 639-652
    • Isermann, R.1
  • 13
    • 0142226215 scopus 로고    scopus 로고
    • A fault tolerant flight control system for sensor and actuator failures using neural networks
    • Napolitano M. Younghwan A. Seanor B. A fault tolerant flight control system for sensor and actuator failures using neural networks Aircraft Design 3 2000 103-128
    • (2000) Aircraft Design , vol.3 , pp. 103-128
    • Napolitano, M.1    Younghwan, A.2    Seanor, B.3
  • 14
    • 0032162989 scopus 로고    scopus 로고
    • Design of fault detection and isolation observers: A matrix pencil approach
    • Patton R. Hou M. Design of fault detection and isolation observers: A matrix pencil approach Automatica 34 9 1998 1135-1140
    • (1998) Automatica , vol.34 , Issue.9 , pp. 1135-1140
    • Patton, R.1    Hou, M.2
  • 21
    • 0032654520 scopus 로고    scopus 로고
    • Sensor fault diagnosis in a chemical process via RBF neural networks
    • Yu D. Gomm J. Williams D. Sensor fault diagnosis in a chemical process via RBF neural networks Control Engineering Practice 7 1999 49-55
    • (1999) Control Engineering Practice , vol.7 , pp. 49-55
    • Yu, D.1    Gomm, J.2    Williams, D.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.