메뉴 건너뛰기




Volumn 21, Issue 2, 2002, Pages 149-165

Improving the numerical technique for computing the accumulated distribution of a quadratic form in normal variables

Author keywords

C19; C63; JEL Classification; Newton'; Numerical inversion of characteristic function; Quadratic form in normal variables; s method; Secant method; Truncation error

Indexed keywords


EID: 1942496050     PISSN: 07474938     EISSN: 15324168     Source Type: Journal    
DOI: 10.1081/ETC-120014346     Document Type: Article
Times cited : (15)

References (18)
  • 1
    • 78650014134 scopus 로고
    • Testing for Serial Correlation in Least Squares Regression. I
    • Durbin, J., and Watson, G. S., 1950. Testing for Serial Correlation in Least Squares Regression. I. Biometrika, 37: 409–428.
    • (1950) Biometrika , vol.37 , pp. 409-428
    • Durbin, J.1    Watson, G.S.2
  • 2
    • 30244459245 scopus 로고
    • Testing for Serial Correlation in Least Squares Regression. II
    • Durbin, J., and Watson, G. S., 1951. Testing for Serial Correlation in Least Squares Regression. II. Biometrika, 38: 159–178.
    • (1951) Biometrika , vol.38 , pp. 159-178
    • Durbin, J.1    Watson, G.S.2
  • 3
    • 0004477912 scopus 로고
    • Testing for Serial Correlation in Least Squares Regression. III
    • Durbin, J., and Watson, G. S., 1971. Testing for Serial Correlation in Least Squares Regression. III. Biometrika, 58: 1–19.
    • (1971) Biometrika , vol.58 , pp. 1-19
    • Durbin, J.1    Watson, G.S.2
  • 4
    • 0011414137 scopus 로고
    • A Point Optimal Test for Autoregressive Disturbances
    • King, M. L., 1985. A Point Optimal Test for Autoregressive Disturbances. J. Econom., 27: 21–37.
    • (1985) J. Econom. , vol.27 , pp. 21-37
    • King, M.L.1
  • 5
    • 0000415208 scopus 로고
    • Towards a Theory of Point Optimal Testing
    • King, M. L., 1988. Towards a Theory of Point Optimal Testing. Econom. Rev., 6: 169–218.
    • (1988) Econom. Rev. , vol.6 , pp. 169-218
    • King, M.L.1
  • 6
    • 84949329319 scopus 로고
    • The Numerical Evaluation of the Distribution Function of a Bilinear Form to a Quadratic Form with Econometric Examples
    • Lye, J. N., 1991. The Numerical Evaluation of the Distribution Function of a Bilinear Form to a Quadratic Form with Econometric Examples. Econ. Rev., 10: 217–234.
    • (1991) Econ. Rev. , vol.10 , pp. 217-234
    • Lye, J.N.1
  • 7
    • 0030488681 scopus 로고    scopus 로고
    • The Accumulated Distribution of Quadratic Forms on the Sphere
    • Saldanha, N. C., and Tomei, C., 1996. The Accumulated Distribution of Quadratic Forms on the Sphere. Linear Algebra and Its Applications, 245: 335–351.
    • (1996) Linear Algebra and Its Applications , vol.245 , pp. 335-351
    • Saldanha, N.C.1    Tomei, C.2
  • 8
    • 0035625024 scopus 로고    scopus 로고
    • The Density of a Quadratic Form in a Vector Uniformly Distributed on the n-Sphere
    • Hillier, G., 2001. The Density of a Quadratic Form in a Vector Uniformly Distributed on the n-Sphere. Econ. Theory, 17: 1–28.
    • (2001) Econ. Theory , vol.17 , pp. 1-28
    • Hillier, G.1
  • 9
    • 33846209414 scopus 로고
    • Note on the Inversion Theorem
    • Gil-Pelaez, J., 1951. Note on the Inversion Theorem. Biometrika, 38: 481–482.
    • (1951) Biometrika , vol.38 , pp. 481-482
    • Gil-Pelaez, J.1
  • 10
    • 0001507590 scopus 로고
    • Computing the Distribution of Quadratic Forms in Normal Variables
    • Imhof, J. P., 1961. Computing the Distribution of Quadratic Forms in Normal Variables. Biometrika, 48: 419–426.
    • (1961) Biometrika , vol.48 , pp. 419-426
    • Imhof, J.P.1
  • 12
    • 85041932786 scopus 로고
    • Numerical Inversion of a Characteristic Function
    • Davies, R. B., 1973. Numerical Inversion of a Characteristic Function. Biometrika, 60: 415–417.
    • (1973) Biometrika , vol.60 , pp. 415-417
    • Davies, R.B.1
  • 13
    • 0001008882 scopus 로고
    • 2 Random Variables
    • 2 Random Variables. Appl. Stat., 29: 323–333.
    • (1980) Appl. Stat. , vol.29 , pp. 323-333
    • Davies, R.B.1
  • 15
    • 0000081199 scopus 로고
    • Computing p-Values for the Generalized Durbin-Watson and Other Invariant Test Statistics
    • Ansley, C. F., Kohn, R., and Shively, T. S., 1992. Computing p-Values for the Generalized Durbin-Watson and Other Invariant Test Statistics. J. Econ., 54: 277–300.
    • (1992) J. Econ. , vol.54 , pp. 277-300
    • Ansley, C.F.1    Kohn, R.2    Shively, T.S.3
  • 17
    • 0001356435 scopus 로고
    • Optimal Invariant Tests for the Autocorrelation Coefficient in Linear Regressions with Stationary or Nonstationary AR(1) Errors
    • Dufour, J-M., and King, M. L., 1991. Optimal Invariant Tests for the Autocorrelation Coefficient in Linear Regressions with Stationary or Nonstationary AR(1) Errors. J. Econ., 47: 115–143.
    • (1991) J. Econ. , vol.47 , pp. 115-143
    • Dufour, J.-M.1    King, M.L.2
  • 18
    • 0001614249 scopus 로고
    • Fast Evaluation of the Distribution of the Durbin-Watson and Other Invariant Test Statistics in Time Series Regression
    • Shively, T. S., Ansley, C. F., and Kohn, R., 1990. Fast Evaluation of the Distribution of the Durbin-Watson and Other Invariant Test Statistics in Time Series Regression. J. Amer. Stat. Assoc., 85: 676–685.
    • (1990) J. Amer. Stat. Assoc. , vol.85 , pp. 676-685
    • Shively, T.S.1    Ansley, C.F.2    Kohn, R.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.