-
1
-
-
0000722909
-
A method of computing the effectiveness of an insecticide
-
W.S. Abbott A method of computing the effectiveness of an insecticide J. Econom. Entomol. 18 1925 265-267
-
(1925)
J. Econom. Entomol.
, vol.18
, pp. 265-267
-
-
Abbott, W.S.1
-
2
-
-
0000764531
-
Logistic-normal distributions: Some properties and uses
-
J. Aitchison S.M. Shen Logistic-normal distributions: Some properties and uses Biometrika 67 1980 261-272
-
(1980)
Biometrika
, vol.67
, pp. 261-272
-
-
Aitchison, J.1
Shen, S.M.2
-
3
-
-
18944362623
-
Some topics in optimum experimental design for generalized linear models
-
G.U.H. Seeber B.J. Francis R. Hatzinger G. Steckel-Berger (Eds.), Springer New York
-
A.C. Atkinson Some topics in optimum experimental design for generalized linear models in: G.U.H. Seeber B.J. Francis R. Hatzinger G. Steckel-Berger (Eds.), Statistical Modelling, Lecture Notes in Statistics, Vol. 104 1995 Springer New York 11-18
-
(1995)
Statistical Modelling, Lecture Notes in Statistics
, vol.104
, pp. 11-18
-
-
Atkinson, A.C.1
-
4
-
-
0001891909
-
The Usefulness of Optimum Experimental Designs
-
A.C. Atkinson The Usefulness of Optimum Experimental Designs J. Roy. Statist. Soc. B 58 1996 59-76
-
(1996)
J. Roy. Statist. Soc. B
, vol.58
, pp. 59-76
-
-
Atkinson, A.C.1
-
6
-
-
0000055811
-
Optimal and efficient designs of experiments
-
C.L. Atwood Optimal and efficient designs of experiments Ann. Math. Statist. 40 1969 1570-1602
-
(1969)
Ann. Math. Statist.
, vol.40
, pp. 1570-1602
-
-
Atwood, C.L.1
-
7
-
-
0013528788
-
D-optimal designs for generalised linear models with variance proportional to the square of the mean
-
J. Burridge P. Sebastiani D-optimal designs for generalised linear models with variance proportional to the square of the mean Biometrika 81 1994 295-304
-
(1994)
Biometrika
, vol.81
, pp. 295-304
-
-
Burridge, J.1
Sebastiani, P.2
-
8
-
-
38249001247
-
A note on optimal Bayesian design for nonlinear problems. Applied to logistic regression experiments
-
K. Chaloner A note on optimal Bayesian design for nonlinear problems. applied to logistic regression experiments J. Statist. Plann. Inference 37 1993 229-235
-
(1993)
J. Statist. Plann. Inference
, vol.37
, pp. 229-235
-
-
Chaloner, K.1
-
9
-
-
0013500349
-
Software for logistic regression experiment design
-
Y. Dodge V.V. Fedorov H.P. Wynn (Eds.), Elsevier Science Publishers B.V. North-Holland
-
K. Chaloner K. Larntz Software for logistic regression experiment design in: Y. Dodge V.V. Fedorov H.P. Wynn (Eds.), Optimal Design and Analysis of Experiments 1988 Elsevier Science Publishers B.V. North-Holland 207-211
-
(1988)
Optimal Design and Analysis of Experiments
, pp. 207-211
-
-
Chaloner, K.1
Larntz, K.2
-
10
-
-
0000083715
-
Optimal Bayesian design applied to logistic regression experiments
-
K. Chaloner K. Larntz Optimal Bayesian design applied to logistic regression experiments J. Statist. Plann. Inference 21 1989 191-208
-
(1989)
J. Statist. Plann. Inference
, vol.21
, pp. 191-208
-
-
Chaloner, K.1
Larntz, K.2
-
11
-
-
84972528615
-
Bayesian experimental design: A review
-
K. Chaloner I. Verdinelli Bayesian experimental design: A review Statist. Sci. 10 1995 273-304
-
(1995)
Statist. Sci.
, vol.10
, pp. 273-304
-
-
Chaloner, K.1
Verdinelli, I.2
-
12
-
-
0001049212
-
Optimum allocation in linear regression theory
-
G. Elfving Optimum allocation in linear regression theory Ann. Math. Statist. 23 1952 255-262
-
(1952)
Ann. Math. Statist.
, vol.23
, pp. 255-262
-
-
Elfving, G.1
-
14
-
-
0009295262
-
On Bayesian D-optimum design criteria and the equivalence theorem in non-linear models
-
D. Firth J.P. Hinde On Bayesian D-optimum design criteria and the equivalence theorem in non-linear models J. Roy. Statist. Soc. B 59 1997 793-798
-
(1997)
J. Roy. Statist. Soc. B
, vol.59
, pp. 793-798
-
-
Firth, D.1
Hinde, J.P.2
-
15
-
-
0000251072
-
The use of a canonical form in the construction of locally optimal designs for non-linear problems
-
I. Ford B. Torsney C.F.J. Wu The use of a canonical form in the construction of locally optimal designs for non-linear problems J. Roy. Statist. Soc. B 54 1992 569-583
-
(1992)
J. Roy. Statist. Soc. B
, vol.54
, pp. 569-583
-
-
Ford, I.1
Torsney, B.2
Wu, C.F.J.3
-
16
-
-
0000631549
-
A geometric approach to optimal design for one-parameter non-linear models
-
L.M. Haines A geometric approach to optimal design for one-parameter non-linear models J. Roy. Statist. Soc. B 57 1995 575-598
-
(1995)
J. Roy. Statist. Soc. B
, vol.57
, pp. 575-598
-
-
Haines, L.M.1
-
17
-
-
0023434318
-
Acute bioassays with control mortality
-
J.A. Hoekstra Acute bioassays with control mortality Water Air Soil Pollut. 35 1987 311-317
-
(1987)
Water Air Soil Pollut.
, vol.35
, pp. 311-317
-
-
Hoekstra, J.A.1
-
21
-
-
0039960772
-
Simple approximations for the inverse cumulative function, the density function and the loss integral of the normal distribution
-
H. Shore Simple approximations for the inverse cumulative function, the density function and the loss integral of the normal distribution Appl. Statist. 31 1982 108-114
-
(1982)
Appl. Statist.
, vol.31
, pp. 108-114
-
-
Shore, H.1
-
22
-
-
0001506741
-
Optimal designs for binary response experiments: Fieller, D, and A Criteria
-
R.R. Sitter C.F.J. Wu Optimal designs for binary response experiments: Fieller, D, and A Criteria Scand. J. Statist. 20 1993 329-341
-
(1993)
Scand. J. Statist.
, vol.20
, pp. 329-341
-
-
Sitter, R.R.1
Wu, C.F.J.2
-
23
-
-
0013497309
-
Locally and Bayesian optimal designs for binary dose-response models with various link functions
-
R. Payne P. Green (Eds.), Physica - Verlag Wurzburg
-
D.M. Smith M.S. Ridout Locally and Bayesian optimal designs for binary dose-response models with various link functions in: R. Payne P. Green (Eds.), COMPSTAT98 1998 Physica - Verlag Wurzburg 455-460
-
(1998)
COMPSTAT98
, pp. 455-460
-
-
Smith, D.M.1
Ridout, M.S.2
-
24
-
-
0002912952
-
Optimal design for percentile estimation of a quantal response curve
-
Y. Dodge V.V. Fedorov H.P. Wynn (Eds.), Elsevier Science Publishers B.V. North-Holland, Amsterdam
-
C.F.J. Wu Optimal design for percentile estimation of a quantal response curve in: Y. Dodge V.V. Fedorov H.P. Wynn (Eds.), Optimal Design and Analysis of Experiments 1988 Elsevier Science Publishers B.V. North-Holland, Amsterdam 213-223
-
(1988)
Optimal Design and Analysis of Experiments
, pp. 213-223
-
-
Wu, C.F.J.1
|