메뉴 건너뛰기




Volumn 44, Issue 1, 2001, Pages 185-204

Monoid-labeled transition systems

Author keywords

Bisimulation; Coalgebra; Distributive lattice; Fuzzy transition; Multiset; Refinable monoid; Transition system; Weak pullback preservation

Indexed keywords

COMPUTER SIMULATION; FUNCTIONS; FUZZY SETS; MATHEMATICAL OPERATORS; MATRIX ALGEBRA; RANDOM PROCESSES; THEOREM PROVING;

EID: 18944374118     PISSN: 15710661     EISSN: None     Source Type: Journal    
DOI: 10.1016/S1571-0661(04)80908-3     Document Type: Conference Paper
Times cited : (54)

References (17)
  • 2
    • 0001437652 scopus 로고    scopus 로고
    • Bisimulation for probabilistic transition systems: A coalgebraic approach
    • de Vink E.P., Rutten J.J.M.M. Bisimulation for probabilistic transition systems: a coalgebraic approach. Theoretical Computer Science. (no. 211):1999;271-293
    • (1999) Theoretical Computer Science , Issue.211 , pp. 271-293
    • De Vink, E.P.1    Rutten, J.J.M.M.2
  • 4
    • 18944404174 scopus 로고
    • Algebras in modular varieties: Baer refinements, cancellation and isotopy
    • Gumm H.P., Herrmann C. Algebras in modular varieties: Baer refinements, cancellation and isotopy. Houston Journal of Mathematics. 5:(no. 4):1979;503-523
    • (1979) Houston Journal of Mathematics , vol.5 , Issue.4 , pp. 503-523
    • Gumm, H.P.1    Herrmann, C.2
  • 9
    • 0002874895 scopus 로고    scopus 로고
    • Coalgebraic structure from weak limit preserving functors
    • Gumm H.P., Schröder T. Coalgebraic structure from weak limit preserving functors. CMCS. (no. 33):2000;113-133
    • (2000) CMCS , Issue.33 , pp. 113-133
    • Gumm, H.P.1    Schröder, T.2
  • 10
    • 18944383756 scopus 로고
    • A cancellation theorem for finite algebras
    • Gumm H.P. A cancellation theorem for finite algebras. Coll. Math. Soc. János Bolyai. 1977;341-344
    • (1977) Coll. Math. Soc. János Bolyai , pp. 341-344
    • Gumm, H.P.1
  • 16
    • 0001986854 scopus 로고    scopus 로고
    • Universal coalgebra: A theory of systems
    • Rutten J.J.M.M. Universal coalgebra: a theory of systems. Theoretical Computer Science. (no. 249):2000;3-80
    • (2000) Theoretical Computer Science , Issue.249 , pp. 3-80
    • Rutten, J.J.M.M.1
  • 17


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.