-
1
-
-
0030161771
-
Efficient implementation of weighted ENO schemes
-
G.-S. Jiang C.-W. Shu Efficient implementation of weighted ENO schemes J. Comput. Phys. 126 1996 202-228
-
(1996)
J. Comput. Phys.
, vol.126
, pp. 202-228
-
-
Jiang, G.-S.1
Shu, C.-W.2
-
2
-
-
40749159424
-
High resolution schemes for hyperbolic conservation laws
-
A. Harten High resolution schemes for hyperbolic conservation laws J. Comput. Phys. 49 1983 357-393
-
(1983)
J. Comput. Phys.
, vol.49
, pp. 357-393
-
-
Harten, A.1
-
3
-
-
34249988639
-
Towards the ultimate conservative difference scheme II, monotonicity and conservation combined in a second order scheme
-
B. Van Leer Towards the ultimate conservative difference scheme II, monotonicity and conservation combined in a second order scheme J. Comput. Phys. 14 1974 361-470
-
(1974)
J. Comput. Phys.
, vol.14
, pp. 361-470
-
-
Van Leer, B.1
-
4
-
-
2442433925
-
Towards the ultimate conservative difference scheme V, a second order sequel to Godunov's method
-
B. Van Leer Towards the ultimate conservative difference scheme V, a second order sequel to Godunov's method J. Comput. Phys. 32 1979 101-136
-
(1979)
J. Comput. Phys.
, vol.32
, pp. 101-136
-
-
Van Leer, B.1
-
5
-
-
33749725182
-
Uniformly high order accurate essentially non-oscillatory schemes III
-
A. Harten B. Enquist S. Osher S. Chakravarthy Uniformly high order accurate essentially non-oscillatory schemes III J. Comput. Phys. 71 1987 231-303
-
(1987)
J. Comput. Phys.
, vol.71
, pp. 231-303
-
-
Harten, A.1
Enquist, B.2
Osher, S.3
Chakravarthy, S.4
-
6
-
-
45449125925
-
Efficient implementation of essentially non-oscillatory shock-capturing schemes
-
C.-W. Shu S. Osher Efficient implementation of essentially non-oscillatory shock-capturing schemes J. Comput. Phys. 77 1988 439-471
-
(1988)
J. Comput. Phys.
, vol.77
, pp. 439-471
-
-
Shu, C.-W.1
Osher, S.2
-
7
-
-
0001568854
-
Efficient implementation of essentially non-oscillatory shock-capturing schemes II
-
C.-W. Shu S. Osher Efficient implementation of essentially non-oscillatory shock-capturing schemes II J. Comput. Phys. 83 1989 32-78
-
(1989)
J. Comput. Phys.
, vol.83
, pp. 32-78
-
-
Shu, C.-W.1
Osher, S.2
-
8
-
-
0000592595
-
Weighted essentially non-oscillatory schemes
-
X.-D. Liu S. Osher T. Chan Weighted essentially non-oscillatory schemes J. Comput. Phys. 115 1994 200-212
-
(1994)
J. Comput. Phys.
, vol.115
, pp. 200-212
-
-
Liu, X.-D.1
Osher, S.2
Chan, T.3
-
9
-
-
0000897959
-
Monotonicity preserving weighted essentially non-oscillatory schemes with increasingly high order of accuracy
-
D.S. Balsara C.-W. Shu Monotonicity preserving weighted essentially non-oscillatory schemes with increasingly high order of accuracy J. Comput. Phys. 160 2000 405-452
-
(2000)
J. Comput. Phys.
, vol.160
, pp. 405-452
-
-
Balsara, D.S.1
Shu, C.-W.2
-
10
-
-
0000660075
-
Simplified discretization of systems of hyperbolic conservation laws containing advection equations
-
R. Fedkiw Simplified discretization of systems of hyperbolic conservation laws containing advection equations J. Comput. Phys. 157 2000 302-326
-
(2000)
J. Comput. Phys.
, vol.157
, pp. 302-326
-
-
Fedkiw, R.1
-
11
-
-
0003754684
-
Level Set Methods and Dynamic Implicit Surfaces
-
Springer, New York
-
S. Osher, R. Fedkiw, Level Set Methods and Dynamic Implicit Surfaces, Applied Mathematical Sciences, vol. 152, Springer, New York, 2003, p. 154
-
(2003)
Applied Mathematical Sciences
, vol.152
, pp. 154
-
-
Osher, S.1
Fedkiw, R.2
-
12
-
-
2942705023
-
Survey of several finite-difference methods for systems of non-linear hyperbolic conservation laws
-
G.A. Sod Survey of several finite-difference methods for systems of non-linear hyperbolic conservation laws J. Comput. Phys. 27 1978 1-31
-
(1978)
J. Comput. Phys.
, vol.27
, pp. 1-31
-
-
Sod, G.A.1
-
13
-
-
0003589319
-
IEEE Standard for Binary Floating-Point Arithmetic
-
IEEE Standards Board, IEEE Standard 754-1985
-
IEEE Standards Board, IEEE Standard for Binary Floating-Point Arithmetic, IEEE Standard 754-1985, 1985
-
(1985)
-
-
-
14
-
-
0030906224
-
High resolution numerical simulation of ideal and non-ideal compressible reacting flows with embedded internal boundaries
-
S. Xu T. Aslam D.S. Stewart High resolution numerical simulation of ideal and non-ideal compressible reacting flows with embedded internal boundaries Combust. Theory Model. 1 1 1997 113-142
-
(1997)
Combust. Theory Model
, vol.1
, Issue.1
, pp. 113-142
-
-
Xu, S.1
Aslam, T.2
Stewart, D.S.3
-
15
-
-
0040683714
-
Convex ENO high order multi-dimensional schemes without field-by-field decomposition or staggered grids
-
X.-D. Liu S. Osher Convex ENO high order multi-dimensional schemes without field-by-field decomposition or staggered grids J. Comput. Phys. 142 1998 304-330
-
(1998)
J. Comput. Phys.
, vol.142
, pp. 304-330
-
-
Liu, X.-D.1
Osher, S.2
-
16
-
-
48749139407
-
The numerical simulation of two-dimensional fluid flow with strong shocks
-
P. Woodward P. Colella The numerical simulation of two-dimensional fluid flow with strong shocks J. Comput. Phys. 54 1984 115-173
-
(1984)
J. Comput. Phys.
, vol.54
, pp. 115-173
-
-
Woodward, P.1
Colella, P.2
-
17
-
-
84980078953
-
Weak solutions of nonlinear hyperbolic equations and their numerical computation
-
P.D. Lax Weak solutions of nonlinear hyperbolic equations and their numerical computation Comm. Pure Appl. Math. 7 1954 159-193
-
(1954)
Comm. Pure Appl. Math.
, vol.7
, pp. 159-193
-
-
Lax, P.D.1
-
18
-
-
0038477770
-
A level set algorithm for tracking discontinuities in hyperbolic conservation laws I: Scalar equations
-
T.D. Aslam A level set algorithm for tracking discontinuities in hyperbolic conservation laws I: Scalar equations J. Comput. Phys. 167 2001 413-438
-
(2001)
J. Comput. Phys.
, vol.167
, pp. 413-438
-
-
Aslam, T.D.1
-
19
-
-
0025448212
-
Propagation of error into regions of smoothness for non-linear approximations to hyperbolic equations
-
R. Donat S. Osher Propagation of error into regions of smoothness for non-linear approximations to hyperbolic equations Comput. Meth. Appl. Mech. Eng. 80 1990 59-64
-
(1990)
Comput. Meth. Appl. Mech. Eng.
, vol.80
, pp. 59-64
-
-
Donat, R.1
Osher, S.2
|