메뉴 건너뛰기




Volumn 26, Issue 3, 2005, Pages 867-879

What is the exact condition for fractional integrals and derivatives of Besicovitch functions to have exact box dimension?

Author keywords

[No Author keywords available]

Indexed keywords

CALCULATIONS; COMPUTATIONAL GEOMETRY; FUNCTIONS; GRAPH THEORY; INTEGRAL EQUATIONS; THEOREM PROVING;

EID: 18844436776     PISSN: 09600779     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.chaos.2005.01.041     Document Type: Article
Times cited : (20)

References (16)
  • 1
    • 84971179934 scopus 로고
    • On Weierstrass-like functions and random recurrent sets
    • T. Bedford On Weierstrass-like functions and random recurrent sets Math. Proc. Camb. Philos. Soc. 106 1989 325 342
    • (1989) Math. Proc. Camb. Philos. Soc. , vol.106 , pp. 325-342
    • Bedford, T.1
  • 2
    • 0000955099 scopus 로고
    • On the Weierstrass-Mandelbrot fractal function
    • M.V. Berry, and Z.V. Lewis On the Weierstrass-Mandelbrot fractal function Proc. R. Soc. Lond. 370A 1980 459 484
    • (1980) Proc. R. Soc. Lond. , vol.370 , pp. 459-484
    • Berry, M.V.1    Lewis, Z.V.2
  • 3
    • 84962992649 scopus 로고
    • Sets of fractional dimensions, V: On dimensional numbers of some continuous curves
    • A.S. Besicovitch, and H.D. Ursell Sets of fractional dimensions, V: on dimensional numbers of some continuous curves J. Lond. Math. Soc. 12 1937 18 25
    • (1937) J. Lond. Math. Soc. , vol.12 , pp. 18-25
    • Besicovitch, A.S.1    Ursell, H.D.2
  • 4
    • 0035156577 scopus 로고    scopus 로고
    • The Minkowski dimension and critical effects in fractal evolution of defects
    • A. Cetera The Minkowski dimension and critical effects in fractal evolution of defects Chaos, Solitons & Fractals 12 2001 475 482
    • (2001) Chaos, Solitons & Fractals , vol.12 , pp. 475-482
    • Cetera, A.1
  • 8
    • 0001191670 scopus 로고
    • Fractal dimensions and singularities of the Weierstrass type function
    • T.Y. Hu, and K.S. Lau Fractal dimensions and singularities of the Weierstrass type function Trans. Amer. Math. Soc. 335 1993 649 655
    • (1993) Trans. Amer. Math. Soc. , vol.335 , pp. 649-655
    • Hu, T.Y.1    Lau, K.S.2
  • 9
    • 0027696006 scopus 로고
    • On dimensions of Cantor set related systems
    • M.S. EL Naschie On dimensions of Cantor set related systems Chaos, Solitons & Fractals 3 1993 675 685
    • (1993) Chaos, Solitons & Fractals , vol.3 , pp. 675-685
    • El Naschie, M.S.1
  • 10
    • 0342854161 scopus 로고    scopus 로고
    • Fractal dimension of zeolite surfaces by calculation
    • M. Tather, and A. Erdem-Senatalar Fractal dimension of zeolite surfaces by calculation Chaos, Solitons & Fractals 12 2001 1145 1155
    • (2001) Chaos, Solitons & Fractals , vol.12 , pp. 1145-1155
    • Tather, M.1    Erdem-Senatalar, A.2
  • 11
    • 0000501589 scopus 로고
    • Fractional Brownian motions, fractional noise and applications
    • B.B. Mandelbrot, and J.W. Vanness Fractional Brownian motions, fractional noise and applications SIAM Rev. 10 1968 422 437
    • (1968) SIAM Rev. , vol.10 , pp. 422-437
    • Mandelbrot, B.B.1    Vanness, J.W.2
  • 14
    • 0000162804 scopus 로고
    • The relationship between fractional calculus and fractals
    • F.B. Tatom The relationship between fractional calculus and fractals Fractal 3 1995 217 229
    • (1995) Fractal , vol.3 , pp. 217-229
    • Tatom, F.B.1
  • 16
    • 27744528280 scopus 로고    scopus 로고
    • On the fractional integrals of the Weierstrass functions: The exact box dimension
    • S.P. Zhou, K. Yao, and W.Y. Su On the fractional integrals of the Weierstrass functions: the exact box dimension Anal Theory Appl 20 2004 323 331
    • (2004) Anal Theory Appl , vol.20 , pp. 323-331
    • Zhou, S.P.1    Yao, K.2    Su, W.Y.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.