메뉴 건너뛰기




Volumn 15, Issue 3, 2005, Pages 383-402

Bayesian analysis of hierarchical pattern-mixture models for clinical trials data with attrition and comparisons to commonly used ad-hoc and model-based approaches

Author keywords

Dropout; Multiple imputation; Pattern mixture models; Robustness

Indexed keywords

ARTICLE; BAYES THEOREM; CLINICAL TRIAL; INTERMETHOD COMPARISON; PRIORITY JOURNAL; SENSITIVITY ANALYSIS; SIMULATION; STATISTICAL ANALYSIS; STATISTICAL MODEL;

EID: 18744401063     PISSN: 10543406     EISSN: None     Source Type: Journal    
DOI: 10.1081/BIP-200056511     Document Type: Article
Times cited : (5)

References (37)
  • 1
    • 3142702323 scopus 로고
    • Tobit models: A survey
    • Amemiya, T. (1984). Tobit models: A survey. J. Econometr. 24:3-61.
    • (1984) J. Econometr. , vol.24 , pp. 3-61
    • Amemiya, T.1
  • 2
    • 34247546721 scopus 로고    scopus 로고
    • Computational methods for multilevel modeling
    • Bell Labs, New Jersey
    • Bates, D. M., Pinheiro, J. C. (1997). Computational methods for multilevel modeling. Technical Memorandum. Bell Labs, New Jersey.
    • (1997) Technical Memorandum
    • Bates, D.M.1    Pinheiro, J.C.2
  • 4
    • 0000676690 scopus 로고    scopus 로고
    • Hierarchical longitudinal modeling
    • Gilks, W. R., Richardson, S., Spiegelhalter, D. J. eds. London: Chapman and Hall
    • Carlin, B. P. (1996). Hierarchical longitudinal modeling. In: Gilks, W. R., Richardson, S., Spiegelhalter, D. J. eds. Markov Chain Monte Carlo in Practice. London: Chapman and Hall, pp. 303-319.
    • (1996) Markov Chain Monte Carlo in Practice , pp. 303-319
    • Carlin, B.P.1
  • 5
    • 18744404595 scopus 로고    scopus 로고
    • Multiple Imputation for Nonignorable Dropout Using Bayesian Pattern-Mixture Models
    • University Park: The Pennsylvania State University, Prevention Methodology Center
    • Demirtas, H. (2003). Multiple Imputation for Nonignorable Dropout Using Bayesian Pattern-Mixture Models. Technical report: 03-58. University Park: The Pennsylvania State University, Prevention Methodology Center.
    • (2003) Technical Report: 03-58
    • Demirtas, H.1
  • 6
    • 0042066687 scopus 로고    scopus 로고
    • On the performance of random-coefficient pattern-mixture models for nonignorable dropout
    • Demirtas, H., Schafer, J. L. (2003). On the performance of random-coefficient pattern-mixture models for nonignorable dropout. Stat. Med. 22:2553-2575.
    • (2003) Stat. Med. , vol.22 , pp. 2553-2575
    • Demirtas, H.1    Schafer, J.L.2
  • 7
    • 4243828610 scopus 로고
    • Informative dropout in longitudinal data analysis
    • Diggle, P. J., Kenward, M. G. (1994). Informative dropout in longitudinal data analysis (with discussion). Appl. Statist. 43:49-94.
    • (1994) Appl. Statist. , vol.43 , pp. 49-94
    • Diggle, P.J.1    Kenward, M.G.2
  • 8
    • 0035044722 scopus 로고    scopus 로고
    • An alternative parameterization of the general linear mixture model for longitudinal data with nonignorable dropouts
    • Fitzmaurice, G. M., Laird, N. M., Shneyer, L. (2001). An alternative parameterization of the general linear mixture model for longitudinal data with nonignorable dropouts. Stat. Med. 20:1009-1021.
    • (2001) Stat. Med. , vol.20 , pp. 1009-1021
    • Fitzmaurice, G.M.1    Laird, N.M.2    Shneyer, L.3
  • 9
    • 84950453304 scopus 로고
    • Sampling-based approaches to calculating marginal densities
    • Gelfand, A. E., Smith, A. F. M. (1990). Sampling-based approaches to calculating marginal densities. J. Am. Stat. Assoc. 85:398-409.
    • (1990) J. Am. Stat. Assoc. , vol.85 , pp. 398-409
    • Gelfand, A.E.1    Smith, A.F.M.2
  • 10
    • 84865262077 scopus 로고
    • Illustration of bayesian inference in normal data models using gibbs sampling
    • Gelfand, A. E., Hills, S. E., Racine-Poon, A., Smith, A. F. M. (1990). Illustration of bayesian inference in normal data models using gibbs sampling. J. Am. Stat. Assoc. 85:972-985.
    • (1990) J. Am. Stat. Assoc. , vol.85 , pp. 972-985
    • Gelfand, A.E.1    Hills, S.E.2    Racine-Poon, A.3    Smith, A.F.M.4
  • 11
    • 21144481276 scopus 로고
    • Multiple imputation in mixture models for nonignorable nonresponse with follow-ups
    • Glynn, R. J., Laird, N. M., Rubin, D. B. (1993). Multiple imputation in mixture models for nonignorable nonresponse with follow-ups. J. Am. Stat. Assoc. 88:984-993.
    • (1993) J. Am. Stat. Assoc. , vol.88 , pp. 984-993
    • Glynn, R.J.1    Laird, N.M.2    Rubin, D.B.3
  • 14
    • 0001766028 scopus 로고
    • The common structure of statistical models of truncation, sample selection and limited dependent variables, and a simple estimator for such models
    • Heckman, J. (1976). The common structure of statistical models of truncation, sample selection and limited dependent variables, and a simple estimator for such models. Ann. Econ. Soc. Meas. 5:475-492.
    • (1976) Ann. Econ. Soc. Meas. , vol.5 , pp. 475-492
    • Heckman, J.1
  • 15
    • 0002105479 scopus 로고    scopus 로고
    • Application of random-effects pattern-mixture models for missing data in longitudinal studies
    • Hedeker, D., Gibbons, R. D. (1997). Application of random-effects pattern-mixture models for missing data in longitudinal studies. Psychol. Methods 2:64-78.
    • (1997) Psychol. Methods , vol.2 , pp. 64-78
    • Hedeker, D.1    Gibbons, R.D.2
  • 16
    • 0032534724 scopus 로고    scopus 로고
    • Selection models for repeated measurements with nonrandom dropout: An illustration of sensitivity
    • Kenward, M. G. (1998). Selection models for repeated measurements with nonrandom dropout: An illustration of sensitivity. Stat. Med. 17:2723-2732.
    • (1998) Stat. Med. , vol.17 , pp. 2723-2732
    • Kenward, M.G.1
  • 17
    • 0020333131 scopus 로고
    • Random-effects models for longitudinal data
    • Laird, N. M., Ware, J. H. (1982). Random-effects models for longitudinal data. Biometrics 38:963-974.
    • (1982) Biometrics , vol.38 , pp. 963-974
    • Laird, N.M.1    Ware, J.H.2
  • 18
    • 21144483152 scopus 로고
    • Pattern-mixture models for multivariate incomplete data
    • Little, R. J. A. (1993). Pattern-mixture models for multivariate incomplete data. J. Am. Stat. Assoc. 88:125-134.
    • (1993) J. Am. Stat. Assoc. , vol.88 , pp. 125-134
    • Little, R.J.A.1
  • 19
    • 77956890002 scopus 로고
    • A class of pattern-mixture models for normal missing data
    • Little, R. J. A. (1994). A class of pattern-mixture models for normal missing data. Biometrika 81:471-483.
    • (1994) Biometrika , vol.81 , pp. 471-483
    • Little, R.J.A.1
  • 20
    • 84950452119 scopus 로고
    • Modeling the dropout mechanism in repeated measures studies
    • Little, R. J. A. (1995). Modeling the dropout mechanism in repeated measures studies. J. Am. Stat. Assoc. 90:1112-1121.
    • (1995) J. Am. Stat. Assoc. , vol.90 , pp. 1112-1121
    • Little, R.J.A.1
  • 22
    • 0029995115 scopus 로고    scopus 로고
    • Pattern-mixture models for multivariate incomplete data with covariates
    • Little, R. J. A., Wang, Y. (1996). Pattern-mixture models for multivariate incomplete data with covariates. Biometrics 52:98-111.
    • (1996) Biometrics , vol.52 , pp. 98-111
    • Little, R.J.A.1    Wang, Y.2
  • 23
    • 0000315742 scopus 로고
    • The ECME algorithm: A simple extension of EM and ECM with faster convergence
    • Liu, C., Rubin, D. B. (1994). The ECME algorithm: A simple extension of EM and ECM with faster convergence. Biometrika 81:633-648.
    • (1994) Biometrika , vol.81 , pp. 633-648
    • Liu, C.1    Rubin, D.B.2
  • 27
    • 0000238336 scopus 로고
    • A simplex method for function minimization
    • Nelder, J. A., Mead, R. (1965). A simplex method for function minimization. Comput. J. 7:308-313.
    • (1965) Comput. J. , vol.7 , pp. 308-313
    • Nelder, J.A.1    Mead, R.2
  • 28
    • 0001585474 scopus 로고
    • A crossed random effects model for unbalanced data with applications in cross-sectional and longitudinal research
    • Raudenbush, S. W. (1993). A crossed random effects model for unbalanced data with applications in cross-sectional and longitudinal research. J. Educ. Stat. 18:321-349.
    • (1993) J. Educ. Stat. , vol.18 , pp. 321-349
    • Raudenbush, S.W.1
  • 29
    • 0017133178 scopus 로고
    • Inference and missing data
    • Rubin, D. B. (1976). Inference and missing data. Biometrika 63:581-592.
    • (1976) Biometrika , vol.63 , pp. 581-592
    • Rubin, D.B.1
  • 31
    • 0030539070 scopus 로고    scopus 로고
    • Multiple imputation after 18+ years
    • Rubin, D. B. (1996). Multiple imputation after 18+ years (with discussion). J. Am. Stat. Assoc. 91:473-520.
    • (1996) J. Am. Stat. Assoc. , vol.91 , pp. 473-520
    • Rubin, D.B.1
  • 33
    • 85047673373 scopus 로고    scopus 로고
    • Missing data: Our view of the state of the art
    • Schafer, J. L., Graham, J. W. (2002). Missing data: Our view of the state of the art. Psychol. Methods 7:147-177.
    • (2002) Psychol. Methods , vol.7 , pp. 147-177
    • Schafer, J.L.1    Graham, J.W.2
  • 34
    • 0003856726 scopus 로고    scopus 로고
    • Oswald: Object-Oriented Software for the Analysis of Longitudinal Data in S
    • Department of Mathematics and Statistics, University of Lancaster, United Kingdom
    • Smith, D. M., Robertson, W. H., Diggle, P. J. (1996). Oswald: Object-Oriented Software for the Analysis of Longitudinal Data in S. Technical Report MA 96/192, Department of Mathematics and Statistics, University of Lancaster, United Kingdom.
    • (1996) Technical Report MA 96/192
    • Smith, D.M.1    Robertson, W.H.2    Diggle, P.J.3
  • 36
    • 0024438062 scopus 로고
    • Estimation and comparisons of changes in the presence of informative right censoring
    • Wu, M. C., Bailey, K. R. (1989). Estimation and comparisons of changes in the presence of informative right censoring. Biometrics 45:939-955.
    • (1989) Biometrics , vol.45 , pp. 939-955
    • Wu, M.C.1    Bailey, K.R.2
  • 37
    • 84910906566 scopus 로고
    • Generalized linear models with random effects: A Gibbs sampling approach
    • Zeger, S. L., Karim, M. R. (1991). Generalized linear models with random effects: A Gibbs sampling approach. J. Am. Stat. Assoc. 86:79-86.
    • (1991) J. Am. Stat. Assoc. , vol.86 , pp. 79-86
    • Zeger, S.L.1    Karim, M.R.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.