메뉴 건너뛰기




Volumn 5, Issue 3, 2001, Pages 245-262

Boosting interval based literals

Author keywords

boosting; interval based literals; machine learning; time series classification

Indexed keywords

LEARNING SYSTEMS; SUPERVISED LEARNING; TIME SERIES;

EID: 18744389061     PISSN: 1088467X     EISSN: 15714128     Source Type: Journal    
DOI: 10.3233/ida-2001-5305     Document Type: Article
Times cited : (53)

References (27)
  • 1
    • 44049083832 scopus 로고    scopus 로고
    • A graphical rule language for continuous dynamic systems
    • M. Mohammadian, ed., Concurrent Systems Engineering Series, IOS Press, Amsterdam, Netherlands
    • C.J. Alonso Gonźalez and J.J. Rodŕ?guez Diez, A graphical rule language for continuous dynamic systems, in: Computational Intelligence for Modelling, Control and Automation, (Vol. 55), M. Mohammadian, ed., Concurrent Systems Engineering Series, IOS Press, Amsterdam, Netherlands, 1999, pp. 482-487.
    • (1999) Computational Intelligence for Modelling, Control and Automation , Issue.55 , pp. 482-487
    • Alonso Gonźalez, C.J.1    Rodŕguez Diez, J.J.2
  • 3
    • 2442512707 scopus 로고    scopus 로고
    • Time-series similarity queries employing a feature-based approach
    • Ioannina, Greece
    • R.J. Alcock and Y. Manolopoulos, Time-series similarity queries employing a feature-based approach, In 7th Hellenic Conference on Informatics, Ioannina, Greece, 1999.
    • (1999) 7th Hellenic Conference on Informatics
    • Alcock, R.J.1    Manolopoulos, Y.2
  • 5
    • 0002076016 scopus 로고    scopus 로고
    • Finding patterns in time series: A dynamic programming approach
    • U.M. Fayyad, G. Piatetsky-Shapiro, P. Smyth and R. Uthurusamy, eds, AAAI Press/MIT Press
    • D.J. Berndt and J. Clifford, Finding patterns in time series: a dynamic programming approach, in: Advances in Knowledge Discovery and Data Mining, U.M. Fayyad, G. Piatetsky-Shapiro, P. Smyth and R. Uthurusamy, eds, AAAI Press/MIT Press, 1996, pp. 229-248.
    • (1996) Advances in Knowledge Discovery and Data Mining , pp. 229-248
    • Berndt, D.J.1    Clifford, J.2
  • 7
    • 0032645080 scopus 로고    scopus 로고
    • An empirical comparison of voting classification algorithms: Bagging, boosting and variants
    • E. Bauer and R. Kohavi, An empirical comparison of voting classification algorithms: bagging, boosting and variants, Machine Learning 36(1/2) (1999), 105-139.
    • (1999) Machine Learning , vol.36 , Issue.1-2 , pp. 105-139
    • Bauer, E.1    Kohavi, R.2
  • 10
    • 0000259511 scopus 로고    scopus 로고
    • Approximate statistical tests for comparing supervised classification learning algorithms
    • T.G. Dietterich, Approximate statistical tests for comparing supervised classification learning algorithms, Neural Computation 10(7) (1998), 1895-1924.
    • (1998) Neural Computation , vol.10 , Issue.7 , pp. 1895-1924
    • Dietterich, T.G.1
  • 11
    • 0001823341 scopus 로고    scopus 로고
    • An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting, and randomization
    • T.G. Dietterich, An experimental comparison of three methods for constructing ensembles of decision trees: bagging, boosting, and randomization. Machine Learning, 1999.
    • (1999) Machine Learning
    • Dietterich, T.G.1
  • 12
    • 0023843391 scopus 로고
    • Analysis of hidden units in a layered network trained to classify sonar targets
    • R.P. Gorman and T.J. Sejnowski, Analysis of hidden units in a layered network trained to classify sonar targets, Neural Networks 1 (1988), 75-89.
    • (1988) Neural Networks , vol.1 , pp. 75-89
    • Gorman, R.P.1    Sejnowski, T.J.2
  • 13
    • 0344672556 scopus 로고    scopus 로고
    • Perceptron learning revisited: The sonar targets problem
    • M. Hasenj̈ager and H. Ritter, Perceptron learning revisited: The sonar targets problem, Neural Processing Letters 10 (1999), 1-8.
    • (1999) Neural Processing Letters , vol.10 , pp. 1-8
    • Hasenj̈ager, M.1    Ritter, H.2
  • 14
    • 0013064122 scopus 로고    scopus 로고
    • Learning comprehensible descriptions of multivariate time series
    • I. Bratko and S. Dzeroski, eds, Morgan Kaufmann
    • M.W. Kadous, Learning comprehensible descriptions of multivariate time series, in: 16th International Conference of Machine Learning (ICML-99), I. Bratko and S. Dzeroski, eds, Morgan Kaufmann, 1999.
    • (1999) 16th International Conference of Machine Learning (ICML-99)
    • Kadous, M.W.1
  • 19
    • 27144463192 scopus 로고    scopus 로고
    • On comparing classifiers: Pitfalls to avoid and a recommended approach
    • S. Salzberg, On comparing classifiers: Pitfalls to avoid and a recommended approach, Data Mining and Knowledge Discovery 1(3) (1997), 317-328.
    • (1997) Data Mining and Knowledge Discovery , vol.1 , Issue.3 , pp. 317-328
    • Salzberg, S.1
  • 25
    • 0031992026 scopus 로고    scopus 로고
    • Perceptron learning revisited: The sonar targets problem
    • J.M. Torres Moreno and M.B. Gordon, Perceptron learning revisited: The sonar targets problem. Neural Processing Letters 7 (1998), 1-4.
    • (1998) Neural Processing Letters , vol.7 , pp. 1-4
    • Torres Moreno, J.M.1    Gordon, M.B.2
  • 26
    • 84883693041 scopus 로고    scopus 로고
    • Data Mining: Practical Machine Learning Tools and Techniques with Java Implementations Morgan Kaufmann
    • I.H. Witten and E. Frank, Data Mining: Practical Machine Learning Tools and Techniques with Java Implementations, Morgan Kaufmann, 1999.
    • (1999)
    • Witten, I.H.1    Frank, E.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.