-
2
-
-
0000543824
-
-
G. Giacomelli, R. Meucci, A. Politi, and F. T. Arecchi, Phys. Rev. Lett. 73, 1099 (1994).
-
(1994)
Phys. Rev. Lett.
, vol.73
, pp. 1099
-
-
Giacomelli, G.1
Meucci, R.2
Politi, A.3
Arecchi, F.T.4
-
6
-
-
0001132787
-
-
R. Hegger, M. J. Bünner, H. Kantz, and A. Giaquinta, Phys. Rev. Lett. 81, 558 (1998).
-
(1998)
Phys. Rev. Lett.
, vol.81
, pp. 558
-
-
Hegger, R.1
Bünner, M.J.2
Kantz, H.3
Giaquinta, A.4
-
11
-
-
85035284895
-
-
Report Amst. Math. Centre, TW 245 (1983)
-
H. A. Lauwerier, Report Amst. Math. Centre, TW 245 (1983).
-
-
-
Lauwerier, H.A.1
-
13
-
-
34250315551
-
-
references therein
-
TDAS stands for time-delay autosynchronization; see K. Pyragas, Phys. Lett. A 170, 421 (1992), and references therein.
-
(1992)
Phys. Lett. A
, vol.170
, pp. 421
-
-
Pyragas, K.1
-
21
-
-
0042781049
-
-
references therein
-
W. Just, E. Reibold, H. Benner, K. Kacperski, P. Fronczak, and J. Holyst, Phys. Lett. A 254, 158 (1999), and references therein.
-
(1999)
Phys. Lett. A
, vol.254
, pp. 158
-
-
Just, W.1
Reibold, E.2
Benner, H.3
Kacperski, K.4
Fronczak, P.5
Holyst, J.6
-
33
-
-
0003013498
-
-
M. Le Berre, E. Ressayre, A. Tallet, and H. M. Gibbs, Phys. Rev. Lett. 56, 274 (1986).
-
(1986)
Phys. Rev. Lett.
, vol.56
, pp. 274
-
-
Le Berre, M.1
Ressayre, E.2
Tallet, A.3
Gibbs, H.M.4
-
34
-
-
0032623009
-
-
G. R. Chen, J. L. Lu, B. Nicholas, and S. M. Ranganathan, Int. J. Bifurcation Chaos Appl. Sci. Eng. 9, 287 (1999).
-
(1999)
Int. J. Bifurcation Chaos Appl. Sci. Eng.
, vol.9
, pp. 287
-
-
Chen, G.R.1
Lu, J.L.2
Nicholas, B.3
Ranganathan, S.M.4
-
35
-
-
85035258867
-
-
Neimark bifurcation is a discrete-time analogue of the Hopf bifurcation appearing in flows; see e.g., J. M. T. Thompson and H. B. Stewart, Nonlinear Dynamics and Chaos (Wiley, Chichester, 1987)
-
Neimark bifurcation is a discrete-time analogue of the Hopf bifurcation appearing in flows; see e.g., J. M. T. Thompson and H. B. Stewart, Nonlinear Dynamics and Chaos (Wiley, Chichester, 1987).
-
-
-
-
37
-
-
85035269778
-
-
Preliminary numerical tests show that stability is possible for (Formula presented)
-
Preliminary numerical tests show that stability is possible for (Formula presented)
-
-
-
-
38
-
-
85035258563
-
-
The free term of the equation (Formula presented) is equal to the product of λ taken with the sign dependent on the parity of D
-
The free term of the equation (Formula presented) is equal to the product of λ taken with the sign dependent on the parity of D.
-
-
-
-
39
-
-
0003582543
-
-
Cambridge University Press, Cambridge, England
-
E. Ott, Chaos in Dynamical Systems (Cambridge University Press, Cambridge, England, 1993).
-
(1993)
Chaos in Dynamical Systems
-
-
Ott, E.1
-
40
-
-
85035294950
-
-
This is due to the fact that the eigenvalue of the logistic map is negative, so the feedback has an opposite sign to that of the map function itself. W. Jansen (private communication)
-
This is due to the fact that the eigenvalue of the logistic map is negative, so the feedback has an opposite sign to that of the map function itself. W. Jansen (private communication).
-
-
-
-
41
-
-
85035254184
-
-
T. Buchner, Ph.D. thesis (in preparation)
-
T. Buchner, Ph.D. thesis (in preparation).
-
-
-
|