메뉴 건너뛰기




Volumn 16, Issue 2, 2001, Pages 299-308

Variational Bayesian learning for optimal model search

Author keywords

Bayesian learning; Local optima problem; Model search; Split and merge operations; Variational approximation

Indexed keywords

BAYESIAN LEARNING; LOCAL OPTIMA PROBLEM; MODEL SEARCH; SPLIT AND MERGE OPERATIONS; VARIATIONAL APPROXIMATION;

EID: 18544376851     PISSN: 13460714     EISSN: 13468030     Source Type: Journal    
DOI: 10.1527/tjsai.16.299     Document Type: Article
Times cited : (2)

References (19)
  • 1
    • 0016355478 scopus 로고
    • A new look at the statistical model identification
    • [Akaike 73]
    • [Akaike 73] Akaike, H.: A new look at the statistical model identification, IEEE Trans. Autom. Contor., Vol. AC-19, pp.716-723 (1973).
    • (1973) IEEE Trans. Autom. Contor. , vol.AC-19 , pp. 716-723
    • Akaike, H.1
  • 2
    • 0003278032 scopus 로고    scopus 로고
    • Learning parameters and structure of latent variable models by variational Bayes
    • [Attias 99]
    • [Attias 99] Attias, H.: Learning parameters and structure of latent variable models by variational Bayes, In proc. Uncertainty in Artificial Intelligence, (1999).
    • (1999) Proc. Uncertainty in Artificial Intelligence
    • Attias, H.1
  • 3
    • 0002389877 scopus 로고    scopus 로고
    • The sample complexity of pattern classification with neural networks: The size of the weights is more important than the size of the network
    • [Bartlett 96], Australian National University
    • [Bartlett 96] Bartlett, P.: The sample complexity of pattern classification with neural networks: the size of the weights is more important than the size of the network, Technical report, Australian National University (1996).
    • (1996) Technical Report
    • Bartlett, P.1
  • 4
    • 0002629270 scopus 로고
    • Maximum likelihood from incomplete data via the EM algorithm
    • [Dempster 77]
    • [Dempster 77] Dempster, A.P., Laird, N.M., and Rubin, D.B.: Maximum likelihood from incomplete data via the EM algorithm, Journal of Royal Statistical Society B, Vol. 9, pp. 1-38 (1977).
    • (1977) Journal of Royal Statistical Society B , vol.9 , pp. 1-38
    • Dempster, A.P.1    Laird, N.M.2    Rubin, D.B.3
  • 7
    • 0033225865 scopus 로고    scopus 로고
    • An introduction to variational methods for graphical models
    • [Jordan 97]
    • [Jordan 97] Jordan, M.I., Ghahramani, Z., Jaakkola, T.S., and Saul, L.K.: An introduction to variational methods for graphical models, Machine Learning, Vol. 37, No. 2 (1997).
    • (1997) Machine Learning , vol.37 , Issue.2
    • Jordan, M.I.1    Ghahramani, Z.2    Jaakkola, T.S.3    Saul, L.K.4
  • 8
    • 18244378520 scopus 로고    scopus 로고
    • On Bayesian analysis of mixtures with an unknown number of components
    • [Richardson 97]
    • [Richardson 97] Richardson, S. and Green, P.: On Bayesian analysis of mixtures with an unknown number of components, Journal of the Royal Statistical Society B, Vol. 59, pp. 731-792 (1997).
    • (1997) Journal of the Royal Statistical Society B , vol.59 , pp. 731-792
    • Richardson, S.1    Green, P.2
  • 9
    • 0001025418 scopus 로고
    • Bayesian interpolation
    • [MacKay 92]
    • [MacKay 92] MacKay, D.: Bayesian interpolation, Neural Computation, Vol. 4, pp. 405-447 (1992).
    • (1992) Neural Computation , vol.4 , pp. 405-447
    • MacKay, D.1
  • 11
    • 18544376478 scopus 로고    scopus 로고
    • Japanese only
    • Japanese only
  • 15
    • 18544386477 scopus 로고    scopus 로고
    • Japanese only
    • Japanese only
  • 16
    • 0034264299 scopus 로고    scopus 로고
    • SMEM algorithm for mixture models
    • [Ueda 00]
    • [Ueda 00] Ueda, N. and Nakano, R., Ghahramani, Z., and Hinton, G.E.: SMEM algorithm for mixture models, Neural Computation, Vol. 12, No. 9, pp. 2109-2128 (2000).
    • (2000) Neural Computation , vol.12 , Issue.9 , pp. 2109-2128
    • Ueda, N.1    Nakano, R.2    Ghahramani, Z.3    Hinton, G.E.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.