메뉴 건너뛰기




Volumn 17, Issue 3, 2002, Pages 209-216

Improving performance of the k-nearest neighbor classifier by combining feature selection with feature weighting

Author keywords

Classification; Feature selection; Feature weighting; Machine learning; Nformation theory; Rough sets

Indexed keywords

CLASSIFICATION; FEATURE SELECTION; FEATURE WEIGHTING; ROUGH SETS;

EID: 18444396928     PISSN: 13460714     EISSN: 13468030     Source Type: Journal    
DOI: 10.1527/tjsai.17.209     Document Type: Article
Times cited : (2)

References (45)
  • 1
    • 0025725905 scopus 로고
    • Instance-based learning algorithms
    • [Aha 91]
    • [Aha 91] D. W. Aha, D. Kibler & M. K. Albert, "Instance-Based Learning Algorithms", Machine Learning, Vol. 6, 1991, pp. 37-66.
    • (1991) Machine Learning , vol.6 , pp. 37-66
    • Aha, D.W.1    Kibler, D.2    Albert, M.K.3
  • 2
    • 0000217085 scopus 로고
    • Tolerating noisy, irrelevant and novel attributes in instance-based learning algorithm
    • [Aha 92]
    • [Aha 92] D. W. Aha, "Tolerating Noisy, Irrelevant and Novel Attributes in Instance-Based Learning Algorithm", International Journal of Man-Machine Studies, Vol.36, No.1, 1992, pp. 267-287.
    • (1992) International Journal of Man-machine Studies , vol.36 , Issue.1 , pp. 267-287
    • Aha, D.W.1
  • 3
    • 0001918655 scopus 로고    scopus 로고
    • Feature selection for case-based classification of cloud types: An empirical comparison
    • [Aha 94], D.W. Aha (Ed.), Menlo Park, CA: AAAI press
    • [Aha 94] D.W. Aha & R.L. Bankert: Feature Selection for case-based classification of Cloud Types: An Empirical Comparison, In D.W. Aha (Ed.) Case-Based Reasoning: Papers from the 1994 Workshop ((TR WS-94-10), Menlo Park, CA: AAAI press.
    • Case-based Reasoning: Papers from the 1994 Workshop (TR WS-94-10)
    • Aha, D.W.1    Bankert, R.L.2
  • 7
    • 84947954233 scopus 로고    scopus 로고
    • Using rough sets and class mutual information for feature selection
    • [Bao 00], IIZUKA2000
    • [Bao 00] Y. Bao, X. Du & N. Ishii: Using Rough Sets and Class Mutual Information for Feature Selection, 6th international Conference on soft computing, IIZUKA2000, pp.452-458.
    • 6th International Conference on Soft Computing , pp. 452-458
    • Bao, Y.1    Du, X.2    Ishii, N.3
  • 9
    • 0028468293 scopus 로고
    • Using mutual information for selection features in supervised neural net learning
    • [Battit 94]
    • [Battit 94] R. Battiti: Using Mutual Information for Selection Features in Supervised Neural Net Learning, IEEE Trans. On Neural Networks, Vol. 5 No. 4, pp.537-550 (1994).
    • (1994) IEEE Trans. on Neural Networks , vol.5 , Issue.4 , pp. 537-550
    • Battiti, R.1
  • 11
    • 0034300725 scopus 로고    scopus 로고
    • A cognitive bias approach to feature selection and weighting for case-based learners
    • [Cardie 00]
    • [Cardie 00] C. Cardie: A Cognitive Bias Approach to Feature Selection and Weighting for Case-Based Learners, Machine Learning, Vol. 41, pp.85-116, (2000).
    • (2000) Machine Learning , vol.41 , pp. 85-116
    • Cardie, C.1
  • 12
    • 34250080806 scopus 로고
    • A weighted nearest neighbor algorithm for learning with symbolic features
    • [Cost 93]
    • [Cost 93] S. Cost & S. Salzberg: A Weighted Nearest Neighbor Algorithm for Learning with Symbolic Features, Machine Learning, Vol. 10, pp.57-78, (1993).
    • (1993) Machine Learning , vol.10 , pp. 57-78
    • Cost, S.1    Salzberg, S.2
  • 13
    • 84926662675 scopus 로고
    • Nearest neighbor pattern classification
    • [Cover 67]
    • [Cover 67] T.M. Cover & P.E. Hart: Nearest Neighbor Pattern classification, IEEE Transactions on Information Theory, Vol. 13, No.1, pp.21-27, (1967).
    • (1967) IEEE Transactions on Information Theory , vol.13 , Issue.1 , pp. 21-27
    • Cover, T.M.1    Hart, P.E.2
  • 16
    • 18544389475 scopus 로고
    • Nearest neighbor norms
    • [Dasarathy 91], IEEE Computer Society Press
    • [Dasarathy 91] B.V. Dasarathy: Nearest Neighbor Norms, NN Pattern Classification Techniques, IEEE Computer Society Press, 1991.
    • (1991) NN Pattern Classification Techniques
    • Dasarathy, B.V.1
  • 21
    • 0001577032 scopus 로고    scopus 로고
    • Hybridizing the genetic algorithm and the K nearest neighbors classification algorithm
    • [Kelly 91b]
    • [Kelly 91b] J.D. Kelly & L. Davis: Hybridizing the Genetic Algorithm and the K Nearest Neighbors Classification Algorithm, Proc. 4th International Conference on Genetic Algorithms, pp.377-383, (1998).
    • (1998) Proc. 4th International Conference on Genetic Algorithms , pp. 377-383
    • Kelly, J.D.1    Davis, L.2
  • 24
    • 84942766197 scopus 로고    scopus 로고
    • A technique of dynamic feature selection using the feature group mutual information
    • [Lee 99], Third Pacific Asia Conference, PAKDD-99
    • [Lee 99] K.C. Lee: A Technique of dynamic Feature Selection Using the Feature Group Mutual Information, Third Pacific Asia Conference, PAKDD-99, LNAI 1574, 1999, pp. 138-142.
    • (1999) LNAI , vol.1574 , pp. 138-142
    • Lee, K.C.1
  • 26
    • 0003408496 scopus 로고    scopus 로고
    • [Merz 98], Irvine, CA: University of California Irvine, Department of Information and Computer Science
    • [Merz 98] C.J. Merz & P.M. Murphy: UCI Repository of Machine Learning Databases, Irvine, CA: University of California Irvine, Department of Information and Computer Science, Internet: http://www.ics.uci.edu/~mlearn/MLRepos itory.html, (1998).
    • (1998) UCI Repository of Machine Learning Databases
    • Merz, C.J.1    Murphy, P.M.2
  • 32
    • 33744584654 scopus 로고
    • Induction of decision trees
    • [Quinlan 86]
    • [Quinlan 86] J.R. Quinlan: Induction of Decision Trees. Machine Learning, Vol. 1 No. 1, pp.81-106, (1986).
    • (1986) Machine Learning , vol.1 , Issue.1 , pp. 81-106
    • Quinlan, J.R.1
  • 35
    • 0012149696 scopus 로고
    • [Salzberg 90], Kluwer Academic Publishers, Norwell, MA
    • [Salzberg 90] S. Salzberg: Learning with Nested Exemplars, Kluwer Academic Publishers, Norwell, MA, 1990.
    • (1990) Learning with Nested Exemplars
    • Salzberg, S.1
  • 36
    • 0026156490 scopus 로고
    • A nearest hyperectangle learning method
    • [Salzberg 91]
    • [Salzberg 91] S. Salzberg: A Nearest Hyperectangle Learning Method, Machine Learning, Vol. 6, pp.251-276, (1991).
    • (1991) Machine Learning , vol.6 , pp. 251-276
    • Salzberg, S.1
  • 37
    • 0022909661 scopus 로고
    • Toward memory-based reasoning
    • [Stanfillm 86]
    • [Stanfillm 86] CC. Stanfill & D. Waltz, Toward Memory-Based Reasoning, Communications of the ACM, Vol. 29, pp.1213-1228, (1986).
    • (1986) Communications of the ACM , vol.29 , pp. 1213-1228
    • Stanfill, C.C.1    Waltz, D.2
  • 38
    • 0012657799 scopus 로고
    • Prototype and feature selection by sampling and random mutation hill climbing algorithms
    • [Skalak 94]
    • [Skalak 94] D. Skalak: Prototype and feature selection by sampling and random mutation hill climbing algorithms, In Proceedings of the Eleventh International Machine Learning Conference, 1994, pp.293-301.
    • (1994) Proceedings of the Eleventh International Machine Learning Conference , pp. 293-301
    • Skalak, D.1
  • 39
    • 84974334700 scopus 로고
    • Case-based reasoning: A review
    • [Watson 94]
    • [Watson 94] I. Watson & Mark: Case-Based Reasoning: A Review, The Knowledge Engineering Review, Vol. 9 No. 4, pp.355-381, (1994).
    • (1994) The Knowledge Engineering Review , vol.9 , Issue.4 , pp. 355-381
    • Watson, I.1    Mark2
  • 40
    • 0033901276 scopus 로고    scopus 로고
    • An integrated instance-based learning algorithm
    • [Wilson 00a]
    • [Wilson 00a] D.R. Wilson & T.R. Martinez: An Integrated Instance-based Learning Algorithm, Computational Intelligence, Vol. 16 No. 1, pp.1-28, (2000).
    • (2000) Computational Intelligence , vol.16 , Issue.1 , pp. 1-28
    • Wilson, D.R.1    Martinez, T.R.2
  • 41
    • 0343081513 scopus 로고    scopus 로고
    • Reduction techniques for instance-based learning algorithms
    • [Wilson 00b]
    • [Wilson 00b] D.R. Wilson & T.R. Martinez: Reduction Techniques for Instance-Based Learning Algorithms, Machine Learning, Vol. 38 No. 3, pp.257-28, (2000).
    • (2000) Machine Learning , vol.38 , Issue.3 , pp. 257-328
    • Wilson, D.R.1    Martinez, T.R.2
  • 44
    • 0002564447 scopus 로고
    • An experimental comparison of the nearest neighbor and nearest hyperrectangle algorithm
    • [Wettschereck 95b]
    • [Wettschereck 95b] D. Wettschereck & T.G.Dietterich: An experimental Comparison of the Nearest Neighbor and Nearest Hyperrectangle Algorithm, Machine learning,Vol. 19, pp. 19-28, (1995).
    • (1995) Machine Learning , vol.19 , pp. 19-28
    • Wettschereck, D.1    Dietterich, T.G.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.