메뉴 건너뛰기




Volumn 71, Issue 1, 2005, Pages

Family of concurrence monotones and its applications

Author keywords

[No Author keywords available]

Indexed keywords

BIPARTITE; INFORMATION PROTOCOLS; MONOTONES; REMOTE ENTANGLEMENT DISTRIBUTION (RED);

EID: 18444369955     PISSN: 10502947     EISSN: 10941622     Source Type: Journal    
DOI: 10.1103/PhysRevA.71.012318     Document Type: Article
Times cited : (139)

References (48)
  • 18
    • 18444418332 scopus 로고    scopus 로고
    • S. A. Babichev, B. Brezger, and A. I. Lvovsky, quant-ph/0308127
    • S. A. Babichev, B. Brezger, and A. I. Lvovsky, quant-ph/0308127.
  • 23
    • 0001106658 scopus 로고    scopus 로고
    • Quantum Information: An Introduction to Basic Theoretical Concepts and Experiments, edited by G. Alber et al. (Springer-Verlag, Berlin)
    • M. Horodecki, P. Horodecki, and R. Horodecki, in Quantum Information: An Introduction to Basic Theoretical Concepts and Experiments, edited by G. Alber et al., Springer Tracts in Modern Physics (Springer-Verlag, Berlin, 2001).
    • (2001) Springer Tracts in Modern Physics
    • Horodecki, M.1    Horodecki, P.2    Horodecki, R.3
  • 29
    • 18444401784 scopus 로고    scopus 로고
    • e-print quant-ph/0402133
    • G. Gour, e-print quant-ph/0402133.
    • Gour, G.1
  • 37
    • 18444416104 scopus 로고    scopus 로고
    • G. Gour and B. C. Sanders, quant-ph/0410016
    • G. Gour and B. C. Sanders, quant-ph/0410016.
  • 40
    • 0003428399 scopus 로고
    • Inequalities: Theory of Majorization and Its Applications, edited by R. Bellman, (Academic, New York)
    • A. W. Marshall and I. Olkin, in Inequalities: Theory of Majorization and Its Applications, edited by R. Bellman, Mathematics in Science and Engineering Vol. 143 (Academic, New York, 1979).
    • (1979) Mathematics in Science and Engineering , vol.143
    • Marshall, A.W.1    Olkin, I.2
  • 44
    • 18444370632 scopus 로고    scopus 로고
    • note
    • Despite the simple expression in Eq. (19) for pure states, the convex roof for the G-concurrence on mixed states is yet unknown. On the other hand, the multipartite, two level generalizations of concurrence [21] do admit an explicit formula for the convex roof.
  • 45
    • 18444377918 scopus 로고    scopus 로고
    • note
    • k=d1d2=4.
  • 46
    • 18444393470 scopus 로고    scopus 로고
    • note
    • The determinant of an operator, like its trace, is basis independent.
  • 47
    • 18444396335 scopus 로고    scopus 로고
    • note
    • For pure states, Eq. (24) follows from the geometric-arithmetic inequality, and for mixed states from the convex roof extension.
  • 48
    • 18444385133 scopus 로고    scopus 로고
    • note
    • 2 elements, it is not necessary for the proof; we could instead write the optimal decompositions with any number of elements.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.