메뉴 건너뛰기




Volumn 4, Issue 6, 1998, Pages 651-668

Interpolation, Correlation Identities, and Inequalities for Infinitely Divisible Variables

Author keywords

Association; Correlation inequality; Covariance identity; Infinitely divisible; Variance bounds

Indexed keywords


EID: 1842816522     PISSN: 10695869     EISSN: None     Source Type: Journal    
DOI: 10.1007/bf02479672     Document Type: Article
Times cited : (54)

References (23)
  • 1
    • 51249173946 scopus 로고
    • Poincaré-type inequalities via stochastic integrals
    • Chen, L.H.Y. (1985). Poincaré-type inequalities via stochastic integrals. Zeitschr. Wahrsch. verw. Geb., 69, 251-277.
    • (1985) Zeitschr. Wahrsch. Verw. Geb. , vol.69 , pp. 251-277
    • Chen, L.H.Y.1
  • 2
    • 0002395643 scopus 로고
    • Characterization of probability distributions by Poincaré-type inequalities
    • Chen, L.H.Y. and Lou, J.H. (1987). Characterization of probability distributions by Poincaré-type inequalities. Ann. Inst. H. Poincaré, Sec B, 23, 91-110.
    • (1987) Ann. Inst. H. Poincaré, Sec B , vol.23 , pp. 91-110
    • Chen, L.H.Y.1    Lou, J.H.2
  • 3
    • 34250226591 scopus 로고
    • Criteria for quasi-convex and pseudo-convexity: Relationships and comparisons
    • Crouzeix, J.P. and Ferland, J.A. (1982). Criteria for quasi-convex and pseudo-convexity: relationships and comparisons. Math. Programm, 23, 193-205.
    • (1982) Math. Programm , vol.23 , pp. 193-205
    • Crouzeix, J.P.1    Ferland, J.A.2
  • 5
    • 0002321209 scopus 로고
    • Variance inequalities for functions of Gaussian variables
    • Houdré, C. and Kagan, A. (1995). Variance inequalities for functions of Gaussian variables. J. Th. Probab.,8, 23-30.
    • (1995) J. Th. Probab. , vol.8 , pp. 23-30
    • Houdré, C.1    Kagan, A.2
  • 6
    • 0010773289 scopus 로고
    • Covariance identities and inequalities for functionals on Wiener and Poisson spaces
    • Houdré, C. and Pérez-Abreu. V. (1995). Covariance identities and inequalities for functionals on Wiener and Poisson spaces. Ann. Probab., 23, 400-419.
    • (1995) Ann. Probab. , vol.23 , pp. 400-419
    • Houdré, C.1    Pérez-Abreu, V.2
  • 7
    • 0031478930 scopus 로고    scopus 로고
    • Itô-Wiener chaos expansion with exact residual and correlation, variance inequalities
    • Hu, Y. (1997). Itô-Wiener chaos expansion with exact residual and correlation, variance inequalities. J. Theoret. Probab. 10, 835-848.
    • (1997) J. Theoret. Probab. , vol.10 , pp. 835-848
    • Hu, Y.1
  • 8
    • 17644366553 scopus 로고
    • A general class of variance inequalities
    • Rao, C.R. and Patil, G.P., Eds., North Holland, Amsterdam
    • Karlin, S. (1994). A general class of variance inequalities. In: Multivariate Analysis: Future Directions. Rao, C.R. and Patil, G.P., Eds., North Holland, Amsterdam, 279-294.
    • (1994) Multivariate Analysis: Future Directions , pp. 279-294
    • Karlin, S.1
  • 9
    • 0030162286 scopus 로고    scopus 로고
    • Inequalities of correlation type for symmetric stable random vectors
    • Koldobsky, A.L. and Montgomery-Smith, S.J. (1996). Inequalities of correlation type for symmetric stable random vectors. Statist. Probab. Letters, 28, 91-96.
    • (1996) Statist. Probab. Letters , vol.28 , pp. 91-96
    • Koldobsky, A.L.1    Montgomery-Smith, S.J.2
  • 10
    • 0001156542 scopus 로고
    • L'algèbre de Lie des gradients itérés d'un générateur Markovien-développements de moyennes et entropies
    • Ledoux, M. (1995). L'algèbre de Lie des gradients itérés d'un générateur Markovien-développements de moyennes et entropies. Ann. Scient. Éc. Norm. Sup., 28, 435-460.
    • (1995) Ann. Scient. Éc. Norm. Sup. , vol.28 , pp. 435-460
    • Ledoux, M.1
  • 11
  • 14
    • 0014596224 scopus 로고
    • Subdefinite matrices and quadratic forms
    • Martos, B. (1969). Subdefinite matrices and quadratic forms. SIAM J. Appl. Math., 17, 1215-1223.
    • (1969) SIAM J. Appl. Math. , vol.17 , pp. 1215-1223
    • Martos, B.1
  • 16
    • 0000380423 scopus 로고
    • A Gaussian correlation inequality for symmetric convex sets
    • Pitt, L.D. (1977). A Gaussian correlation inequality for symmetric convex sets. Ann. Probab., 5, 470-474.
    • (1977) Ann. Probab. , vol.5 , pp. 470-474
    • Pitt, L.D.1
  • 17
    • 0001509312 scopus 로고
    • Positively correlated normal variables are associated
    • Pitt, L.D. (1982). Positively correlated normal variables are associated. Ann. Probab., 10, 496-499.
    • (1982) Ann. Probab. , vol.10 , pp. 496-499
    • Pitt, L.D.1
  • 18
    • 0000485147 scopus 로고
    • On logarithmic concave measures and functions
    • Prekopa, A. (1973). On logarithmic concave measures and functions. Acta. Sci. Math., 34, 335-343.
    • (1973) Acta. Sci. Math. , vol.34 , pp. 335-343
    • Prekopa, A.1
  • 19
    • 1842797367 scopus 로고
    • Association and multivariate extreme value distributions
    • Heyde, C.C., Ed., Statistical Society of Australia
    • Resnick, S.I. (1988). Association and multivariate extreme value distributions. In: Studies in Statistical Modeling and Statistical Science. Heyde, C.C., Ed., Statistical Society of Australia.
    • (1988) Studies in Statistical Modeling and Statistical Science
    • Resnick, S.I.1
  • 20
    • 0043237558 scopus 로고
    • Association of infinitely divisible random vectors
    • Samorodnitsky, G. (1995). Association of infinitely divisible random vectors. Stoch. Proc. Appl., 55, 45-55
    • (1995) Stoch. Proc. Appl. , vol.55 , pp. 45-55
    • Samorodnitsky, G.1
  • 21
    • 22044451709 scopus 로고    scopus 로고
    • On the Gaussian measure of the intersection of symmetric convex sets
    • Schechtman G., Schlumprecht, Th., and Zinn, J. (1998). On the Gaussian measure of the intersection of symmetric convex sets. Ann. Probab. 26, 346-357.
    • (1998) Ann. Probab. , vol.26 , pp. 346-357
    • Schechtman, G.1    Schlumprecht, Th.2    Zinn, J.3
  • 23
    • 38249027824 scopus 로고
    • A differential version of the Efron-Stein inequality: Bounding the variance of a function of an infinitely divisible variable
    • Vitale, R. (1989). A differential version of the Efron-Stein inequality: Bounding the variance of a function of an infinitely divisible variable. Statist. Probab. Letters, 7, 105-112.
    • (1989) Statist. Probab. Letters , vol.7 , pp. 105-112
    • Vitale, R.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.