메뉴 건너뛰기




Volumn 46, Issue 1, 2004, Pages 155-171

Long-range dependence of Markov renewal processes

Author keywords

Ergodicity; Hurst index; Long range dependence; Markov renewal process; Moment index; Solidarity

Indexed keywords


EID: 1842715060     PISSN: 13691473     EISSN: None     Source Type: Journal    
DOI: 10.1111/j.1467-842X.2004.00321.x     Document Type: Article
Times cited : (5)

References (25)
  • 4
    • 1842743249 scopus 로고
    • Geometric convergence of semi-Markov transition probabilities
    • CHEONG, C.K. (1967). Geometric convergence of semi-Markov transition probabilities. Ann. Probab. 15, 388-393.
    • (1967) Ann. Probab. , vol.15 , pp. 388-393
    • Cheong, C.K.1
  • 7
    • 0033233679 scopus 로고    scopus 로고
    • The Hurst index of long range dependent renewal processes
    • DALEY, D.J. (1999). The Hurst index of long range dependent renewal processes. Ann. Probab. 27, 2035-2041.
    • (1999) Ann. Probab. , vol.27 , pp. 2035-2041
    • Daley, D.J.1
  • 8
    • 0035536042 scopus 로고    scopus 로고
    • The busy period of the M/GI/∞ queue
    • DALEY, D.J. (2001). The busy period of the M/GI/∞ queue. Queueing Systems Theory Appl. 38, 195-204.
    • (2001) Queueing Systems Theory Appl. , vol.38 , pp. 195-204
    • Daley, D.J.1
  • 10
    • 0031572725 scopus 로고    scopus 로고
    • Long range dependence of point processes, with queueing examples
    • DALEY, D.J. & VESILO, R. (1997). Long range dependence of point processes, with queueing examples. Stochastic Process. Appl. 70, 265-282.
    • (1997) Stochastic Process. Appl. , vol.70 , pp. 265-282
    • Daley, D.J.1    Vesilo, R.2
  • 11
    • 0007246007 scopus 로고    scopus 로고
    • Long range dependence of inputs and outputs of some classical queues
    • eds D.R. McDonald & S.R.E. Turner. Fields Inst. Commun.
    • DALEY, D.J. & VESILO, R.A. (2000). Long range dependence of inputs and outputs of some classical queues. In Analysis of Communication Networks: Call Centres, Traffic and Performance, eds D.R. McDonald & S.R.E. Turner. Fields Inst. Commun. 28, 179-186.
    • (2000) Analysis of Communication Networks: Call Centres, Traffic and Performance , vol.28 , pp. 179-186
    • Daley, D.J.1    Vesilo, R.A.2
  • 12
    • 0034427361 scopus 로고    scopus 로고
    • Long-range dependent point processes and their Palm-Khinchin distributions
    • DALEY, D. J., ROLSKI, T. & VESILO, R. (2000). Long-range dependent point processes and their Palm-Khinchin distributions. Adv. in Appl. Probab. 32, 1051-1063.
    • (2000) Adv. in Appl. Probab. , vol.32 , pp. 1051-1063
    • Daley, D.J.1    Rolski, T.2    Vesilo, R.3
  • 15
    • 0000099991 scopus 로고
    • Geometric ergodicity of Harris recurrent Markov chains with application to renewal theory
    • NUMMELIN, R. & TUOMINEN, P. (1982). Geometric ergodicity of Harris recurrent Markov chains with application to renewal theory. Stochastic Process. Appl. 12, 187-202.
    • (1982) Stochastic Process. Appl. , vol.12 , pp. 187-202
    • Nummelin, R.1    Tuominen, P.2
  • 16
    • 0010862224 scopus 로고
    • The rate of convergence in Orey's theorem for Harris recurrent Markov chains with application to renewal theory
    • NUMMELIN, R. & TUOMINEN, P. (1983). The rate of convergence in Orey's theorem for Harris recurrent Markov chains with application to renewal theory. Stochastic Process. Appl. 15, 295-311.
    • (1983) Stochastic Process. Appl. , vol.15 , pp. 295-311
    • Nummelin, R.1    Tuominen, P.2
  • 17
    • 0000936303 scopus 로고
    • Markov renewal processes: Definitions and preliminary properties
    • PYKE, R. (1961a). Markov renewal processes: definitions and preliminary properties. Ann. Math. Statist. 32, 1231-1242.
    • (1961) Ann. Math. Statist. , vol.32 , pp. 1231-1242
    • Pyke, R.1
  • 18
    • 0000936304 scopus 로고
    • Markov renewal processes with finitely many states
    • PYKE, R. (1961b). Markov renewal processes with finitely many states. Ann. Math. Statist. 32, 1243-1259.
    • (1961) Ann. Math. Statist. , vol.32 , pp. 1243-1259
    • Pyke, R.1
  • 19
    • 84862352225 scopus 로고    scopus 로고
    • The solidarity of Markov renewal processes
    • eds J. Janssen & N. Łimnios, pp. . Dordrecht: Kluwer Academic Publishers.
    • PYKE, R. (1999). The solidarity of Markov renewal processes. In Semi-Markov Models and Applications, eds J. Janssen & N. Łimnios, pp.3-21. Dordrecht: Kluwer Academic Publishers.
    • (1999) Semi-Markov Models and Applications , pp. 3-21
    • Pyke, R.1
  • 20
    • 0000600488 scopus 로고
    • Limit theorems for Markov renewal processes
    • PYKE, R. & SCHAUFELE, R. (1964). Limit theorems for Markov renewal processes. Ann. Math. Statist. 35, 1746-1764.
    • (1964) Ann. Math. Statist. , vol.35 , pp. 1746-1764
    • Pyke, R.1    Schaufele, R.2
  • 21
    • 0040271272 scopus 로고
    • Renewal theorem in the infinite variance case
    • SGIBNEV, M.S. (1981). Renewal theorem in the infinite variance case. Siberian Math. J. 22, 787-796.
    • (1981) Siberian Math. J. , vol.22 , pp. 787-796
    • Sgibnev, M.S.1
  • 22
    • 0030504425 scopus 로고    scopus 로고
    • An infinite variance solidarity theorem for Markov renewal processes
    • SGIBNEV, M.S. (1996). An infinite variance solidarity theorem for Markov renewal processes. J. Appl. Probab. 33, 434-438.
    • (1996) J. Appl. Probab. , vol.33 , pp. 434-438
    • Sgibnev, M.S.1
  • 23
    • 0000423678 scopus 로고
    • Renewal theorems when the first or the second moment is finite
    • TEUGELS, J. (1968a). Renewal theorems when the first or the second moment is finite. Ann. Math. Statist. 39, 1210-1219.
    • (1968) Ann. Math. Statist. , vol.39 , pp. 1210-1219
    • Teugels, J.1
  • 24
    • 0040865550 scopus 로고
    • Exponential ergodicity in Markov renewal processes
    • TEUGELS, J. (1968b). Exponential ergodicity in Markov renewal processes. J. Appl. Probab. 5, 387-400.
    • (1968) J. Appl. Probab. , vol.5 , pp. 387-400
    • Teugels, J.1
  • 25
    • 0040271278 scopus 로고
    • Regular variation of Markov renewal processes
    • TEUGELS, J. (1970). Regular variation of Markov renewal processes. J. London Math. Soc. 2, 179-190.
    • (1970) J. London Math. Soc. , vol.2 , pp. 179-190
    • Teugels, J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.