메뉴 건너뛰기




Volumn 14, Issue 6, 2004, Pages 415-438

The middle product algorithm I. Speeding up the division and square root of power series

Author keywords

Division; Inversion; Middle product; Newton's method; Square root

Indexed keywords

APPROXIMATION THEORY; COMPUTATIONAL COMPLEXITY; FUNCTIONS; INVERSE PROBLEMS; ITERATIVE METHODS; MATHEMATICAL MODELS; POLYNOMIALS; ROOT LOCI; THEOREM PROVING;

EID: 1842534273     PISSN: 09381279     EISSN: None     Source Type: Journal    
DOI: 10.1007/s00200-003-0144-2     Document Type: Article
Times cited : (55)

References (13)
  • 1
    • 1842605930 scopus 로고
    • The complexity of multiple-precision arithmetic
    • R.S. Anderssen and R.P. Brent, (eds.), University of Queensland Press
    • Brent, R.P.: The complexity of multiple-precision arithmetic. In: The Complexity of Computational Problem Solving. R.S. Anderssen and R.P. Brent, (eds.), University of Queensland Press, pp. 126-165
    • (1976) The Complexity of Computational Problem Solving , pp. 126-165
    • Brent, R.P.1
  • 2
    • 24544447608 scopus 로고    scopus 로고
    • Fast recursive division
    • Research Report MPI-I-98-1-022, MPI Saarbrücken
    • Burnikel, C., Ziegler, J.: Fast recursive division. Research Report MPI-I-98-1-022, MPI Saarbrücken, 1998
    • (1998)
    • Burnikel, C.1    Ziegler, J.2
  • 4
    • 0003043247 scopus 로고    scopus 로고
    • Challenges of symbolic computation: My favorite open problems
    • Kaltofen, E.: Challenges of symbolic computation: My favorite open problems. J. Symbolic Comput. 29(6), 891-919 (2000)
    • (2000) J. Symbolic Comput. , vol.298 , Issue.6 , pp. 891-919
    • Kaltofen, E.1
  • 5
    • 0040170055 scopus 로고
    • Addition requirements for matrix and transposed matrix products
    • Kaminski, M., Kirpatrick, D.G., Bshouty, N.H.: Addition requirements for matrix and transposed matrix products. J. Algorithms, 9, 354-364 (1988)
    • (1988) J. Algorithms , vol.9 , pp. 354-364
    • Kaminski, M.1    Kirpatrick, D.G.2    Bshouty, N.H.3
  • 6
    • 0005395785 scopus 로고
    • Multiplication of multiplace numbers by automata
    • Karatsuba, A.A., Ofman, Y.P.: Multiplication of multiplace numbers by automata. Dokl. Akad. Nauk SSSR 145(2), 293-294 (1962)
    • (1962) Dokl. Akad. Nauk SSSR , vol.145 , Issue.2 , pp. 293-294
    • Karatsuba, A.A.1    Ofman, Y.P.2
  • 7
    • 0031360906 scopus 로고    scopus 로고
    • High-precision division and square root
    • Karp, A.H., Markstein, P.: High-precision division and square root. ACM Trans. Math. Softw. 23(4), 561-589 (1997)
    • (1997) ACM Trans. Math. Softw. , vol.23 , Issue.4 , pp. 561-589
    • Karp, A.H.1    Markstein, P.2
  • 8
    • 0003878052 scopus 로고
    • Efficient multiprecision floating point multiplication with exact rounding
    • RISC-Linz Report Series 93-76, RISC-Linz, Johannes Kepler University
    • Krandick, W., Johnson, J.R.: Efficient multiprecision floating point multiplication with exact rounding. RISC-Linz Report Series 93-76, RISC-Linz, Johannes Kepler University, 1993
    • (1993)
    • Krandick, W.1    Johnson, J.R.2
  • 9
    • 0033710506 scopus 로고    scopus 로고
    • On short multiplications and divisions
    • Mulers, T.: On short multiplications and divisions. AAECC 11(1), 69-88 (2000)
    • (2000) AAECC , vol.11 , Issue.1 , pp. 69-88
    • Mulers, T.1
  • 10
    • 34250459760 scopus 로고
    • Schnelle Multiplikation großer Zahlen
    • Schönhage, A., Strassen, V.: Schnelle Multiplikation großer Zahlen. Computing 7, 281-292 (1971)
    • (1971) Computing , vol.7 , pp. 281-292
    • Schönhage, A.1    Strassen, V.2
  • 12
    • 0036899567 scopus 로고    scopus 로고
    • Relax, but don't be too lazy
    • van der Hoeven, J.: Relax, but don't be too lazy. J. Symbolic Comput. 34(6), 479-542 (2002)
    • (2002) J. Symbolic Comput. , vol.34 , Issue.6 , pp. 479-542
    • Van Der Hoeven, J.1
  • 13
    • 0013137050 scopus 로고    scopus 로고
    • Karatsuba square root
    • Research Report 3805, INRIA
    • Zimmermann, P.: Karatsuba square root. Research Report 3805, INRIA, 1999
    • (1999)
    • Zimmermann, P.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.