-
2
-
-
0002013257
-
Stationary subdivision
-
[CDM]
-
[CDM] Cavaretta, A., Dahmen, W., and Micchelli, C. A. (1991). Stationary subdivision. Mem. Amer. Math. Soc. 93, 1-186.
-
(1991)
Mem. Amer. Math. Soc.
, vol.93
, pp. 1-186
-
-
Cavaretta, A.1
Dahmen, W.2
Micchelli, C.A.3
-
4
-
-
1842482725
-
-
[D1] CBMS-NSF Conf. Ser. in Appl. Math. Society for Industrial and Applied Mathematics, Philadelphia, PA
-
[D1] Daubechies, I. (1992). Ten Lectures un Wavelets. CBMS-NSF Conf. Ser. in Appl. Math. Society for Industrial and Applied Mathematics, Philadelphia, PA.
-
(1992)
Ten Lectures un Wavelets
-
-
Daubechies, I.1
-
5
-
-
84990575058
-
Orthonormal bases of compactly supported wavelets
-
[D2]
-
[D2] _ (1988). Orthonormal bases of compactly supported wavelets. Comm. Pure Appl. Math. 41, 909-996.
-
(1988)
Comm. Pure Appl. Math.
, vol.41
, pp. 909-996
-
-
-
6
-
-
0000364986
-
Two-scale difference equations: I. Existence and global regularity of solutions
-
[DL]
-
[DL] Daubechies, I., and Lagarias, J. (1991; 1992). Two-scale difference equations: I. Existence and global regularity of solutions. SIAM J. Math. Anal. 22, 1388-1410; Two-scale difference equations: II. Local regularity, infinite products of matrices and fractals. SIAM J. Math. Anal. 23, 1031-1079.
-
(1991)
SIAM J. Math. Anal.
, vol.22
, pp. 1388-1410
-
-
Daubechies, I.1
Lagarias, J.2
-
7
-
-
0000160525
-
Two-scale difference equations: II. Local regularity, infinite products of matrices and fractals
-
[DL] Daubechies, I., and Lagarias, J. (1991; 1992). Two-scale difference equations: I. Existence and global regularity of solutions. SIAM J. Math. Anal. 22, 1388-1410; Two-scale difference equations: II. Local regularity, infinite products of matrices and fractals. SIAM J. Math. Anal. 23, 1031-1079.
-
SIAM J. Math. Anal.
, vol.23
, pp. 1031-1079
-
-
-
8
-
-
34249975165
-
Symmetric iterative interpolation processes
-
[DD]
-
[DD] Deslauriers, G., and Dubue, S. (1989). Symmetric iterative interpolation processes. Canstr. Approx. 5, 49-68.
-
(1989)
Canstr. Approx.
, vol.5
, pp. 49-68
-
-
Deslauriers, G.1
Dubue, S.2
-
9
-
-
0030560155
-
Construction of orthogonal wavelets using fractal interpolation functions
-
[DGHM] to appear
-
[DGHM] Donovan, G., Geronimo, J. S., Hardin, D. P., and Massopust, P. R. Construction of orthogonal wavelets using fractal interpolation functions. SIAM J. Math. Anal. (to appear).
-
SIAM J. Math. Anal.
-
-
Donovan, G.1
Geronimo, J.S.2
Hardin, D.P.3
Massopust, P.R.4
-
10
-
-
35949018382
-
Ergodic theory of chaos and strange attractors
-
[ER]
-
[ER] Eckmann, J.-P., and Ruelle, D. (1985). Ergodic theory of chaos and strange attractors. Rev. Modern Phys. 57, 617-656.
-
(1985)
Rev. Modern Phys.
, vol.57
, pp. 617-656
-
-
Eckmann, J.-P.1
Ruelle, D.2
-
11
-
-
0001544864
-
Fractal functions and wavelet expansions based on several scaling functions
-
[GHM]
-
[GHM] Geronimo, J. S., Hardin, D. P., and Massopust, P. R. (1994). Fractal functions and wavelet expansions based on several scaling functions. J. Approx. Theory 78, 373-401.
-
(1994)
J. Approx. Theory
, vol.78
, pp. 373-401
-
-
Geronimo, J.S.1
Hardin, D.P.2
Massopust, P.R.3
-
13
-
-
34250967631
-
Zur Theorie der orthogonalen Funktionensysteme
-
[Ha]
-
[Ha] Haar, A. (1910). Zur Theorie der orthogonalen Funktionensysteme. Math. Ann. 69, 331-371.
-
(1910)
Math. Ann.
, vol.69
, pp. 331-371
-
-
Haar, A.1
-
14
-
-
0028495847
-
Multi-resolution analysis of multiplicity d: Applications to dyadic interpolation
-
[He]
-
[He] Hervé, L. (1994). Multi-resolution analysis of multiplicity d: Applications to dyadic interpolation. Appl. Camp. Harm. Anal. 1, 299-315.
-
(1994)
Appl. Camp. Harm. Anal.
, vol.1
, pp. 299-315
-
-
Hervé, L.1
-
15
-
-
0000629355
-
Multiresolulion analyses based on fractal functions
-
[HKM]
-
[HKM] Hardin, D. P., Kessler, B., and Massopust, P. R. (1992). Multiresolulion analyses based on fractal functions. J. Approx. Theory. 71, 104-120.
-
(1992)
J. Approx. Theory.
, vol.71
, pp. 104-120
-
-
Hardin, D.P.1
Kessler, B.2
Massopust, P.R.3
-
16
-
-
85029995344
-
Approximation by translates of refinable functions
-
[HSS] to appear
-
[HSS] Heil, C., Strang, G., and Strela, V. Approximation by translates of refinable functions. Numer. Math. (to appear).
-
Numer. Math.
-
-
Heil, C.1
Strang, G.2
Strela, V.3
-
18
-
-
1842482724
-
2(ℝ) generated by refinable function vectors
-
[P] to appear
-
2(ℝ) generated by refinable function vectors. Constr. Approx. (to appear).
-
Constr. Approx.
-
-
Plonka, G.1
-
19
-
-
0029207792
-
Short wavelets and matrix dilation equations
-
[SS1]
-
[SS1] Strang, G., and Strela, V. (1995). Short wavelets and matrix dilation equations. IEEE Trans. Signal Proc. 43, 108-115.
-
(1995)
IEEE Trans. Signal Proc.
, vol.43
, pp. 108-115
-
-
Strang, G.1
Strela, V.2
-
20
-
-
0028478812
-
Orthogonal multiwavelets with vanishing moments
-
[SS2]
-
[SS2] _ (1994). Orthogonal multiwavelets with vanishing moments. J. Opt. Engrg. 33, 2104-2107.
-
(1994)
J. Opt. Engrg.
, vol.33
, pp. 2104-2107
-
-
-
21
-
-
84953751498
-
-
[Z] Cambridge University Press, Cambridge
-
[Z] Zygmund, A. (1959). Trigonometric Series. Cambridge University Press, Cambridge.
-
(1959)
Trigonometric Series
-
-
Zygmund, A.1
|