메뉴 건너뛰기




Volumn 65, Issue 1-2, 2004, Pages 19-29

Greenhouse temperature modeling: A comparison between sigmoid neural networks and hybrid models

Author keywords

Database; Extrapolation; Prior knowledge; Radial basis function; Training domain

Indexed keywords

CLIMATOLOGY; DATABASE SYSTEMS; EXTRAPOLATION; MATHEMATICAL MODELS; NEURAL NETWORKS; PROBLEM SOLVING; THERMAL EFFECTS;

EID: 1842478874     PISSN: 03784754     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.matcom.2003.09.004     Document Type: Conference Paper
Times cited : (47)

References (15)
  • 2
    • 0028404923 scopus 로고
    • Imitation of a procedural greenhouse model with an artificial neural network
    • Kok R., Lacroix R., Clark G., Taillefer E. Imitation of a procedural greenhouse model with an artificial neural network. Can. Agric. Eng. 36(2):1994;117-126.
    • (1994) Can. Agric. Eng. , vol.36 , Issue.2 , pp. 117-126
    • Kok, R.1    Lacroix, R.2    Clark, G.3    Taillefer, E.4
  • 4
    • 0026806616 scopus 로고
    • A hybrid neural network-first principles approach to process modeling
    • Psichogios D.C., Ungar L.H. A hybrid neural network-first principles approach to process modeling. Am. Inst. Chem. Eng. J. 38(10):1992;1499-1511.
    • (1992) Am. Inst. Chem. Eng. J. , vol.38 , Issue.10 , pp. 1499-1511
    • Psichogios, D.C.1    Ungar, L.H.2
  • 5
    • 0033691089 scopus 로고    scopus 로고
    • Hybrid modelling of biotechnological processes using neural networks
    • Chen L., Bernard O., Bastin G., Angelov P. Hybrid modelling of biotechnological processes using neural networks. Control Eng. Pract. 8:2000;821-827.
    • (2000) Control Eng. Pract. , vol.8 , pp. 821-827
    • Chen, L.1    Bernard, O.2    Bastin, G.3    Angelov, P.4
  • 6
    • 0343627880 scopus 로고    scopus 로고
    • Process modeling development through artificial neural networks and hybrid models
    • Zorzetto L.F.M., Filho R.M., Wolf-Maciel M.R. Process modeling development through artificial neural networks and hybrid models. Comput. Chem. Eng. 24:2000;1355-1360.
    • (2000) Comput. Chem. Eng. , vol.24 , pp. 1355-1360
    • Zorzetto, L.F.M.1    Filho, R.M.2    Wolf-Maciel, M.R.3
  • 7
    • 0028484335 scopus 로고
    • Modelling chemical processes using prior knowledge and neural networks
    • Thompson M.L., Kramer M.A. Modelling chemical processes using prior knowledge and neural networks. Am. Inst. Chem. Eng. J. 40(8):1994;1328-1340.
    • (1994) Am. Inst. Chem. Eng. J. , vol.40 , Issue.8 , pp. 1328-1340
    • Thompson, M.L.1    Kramer, M.A.2
  • 8
    • 0028969090 scopus 로고
    • Dynamic modelling of the activated sludge process: Improving prediction using neural networks
    • Cote M., Gandjean B.P.A., Lessard P., Thibault J. Dynamic modelling of the activated sludge process: Improving prediction using neural networks. Water Res. 29(4):1995;995-1004.
    • (1995) Water Res. , vol.29 , Issue.4 , pp. 995-1004
    • Cote, M.1    Gandjean, B.P.A.2    Lessard, P.3    Thibault, J.4
  • 9
    • 0037142398 scopus 로고    scopus 로고
    • Hybrid neural network modeling of a full-scale industrial wastewater treatment process
    • Lee D.S., Jeon C.O., Park J.M., Chang K.S. Hybrid neural network modeling of a full-scale industrial wastewater treatment process. Biotechnol. Bioeng. 78(6):2002;670-682.
    • (2002) Biotechnol. Bioeng. , vol.78 , Issue.6 , pp. 670-682
    • Lee, D.S.1    Jeon, C.O.2    Park, J.M.3    Chang, K.S.4
  • 10
    • 0030083646 scopus 로고    scopus 로고
    • Predictive control of quality in batch polymerization using hybrid ANN models
    • Tsen A.Y., Jang S.S., Wong D.S.H. Predictive control of quality in batch polymerization using hybrid ANN models. Am. Inst. Chem. Eng. J. 42(2):1996;455-465.
    • (1996) Am. Inst. Chem. Eng. J. , vol.42 , Issue.2 , pp. 455-465
    • Tsen, A.Y.1    Jang, S.S.2    Wong, D.S.H.3
  • 11
    • 0032678387 scopus 로고    scopus 로고
    • Robust controllers for simultaneous control of temperature and CO2 concentration in greenhouses
    • Linker R., Gutman P.O., Seginer I. Robust controllers for simultaneous control of temperature and CO2 concentration in greenhouses. Control Eng. Pract. 7(7):1999;851-862.
    • (1999) Control Eng. Pract. , vol.7 , Issue.7 , pp. 851-862
    • Linker, R.1    Gutman, P.O.2    Seginer, I.3
  • 12
    • 0031100267 scopus 로고    scopus 로고
    • Identification of time-varying nonlinear systems using minimal radial basis function neural networks
    • Yingwei L., Sundararajan N., Saratchandran P. Identification of time-varying nonlinear systems using minimal radial basis function neural networks. IEE Proc. D-Control Theory Appl. 144(2):1997;202-208.
    • (1997) IEE Proc. D-control Theory Appl. , vol.144 , Issue.2 , pp. 202-208
    • Yingwei, L.1    Sundararajan, N.2    Saratchandran, P.3
  • 13
    • 0026116468 scopus 로고
    • Orthogonal least squares algorithm for radial basis function networks
    • Chen S., Cowan C.F.N., Grant P.M. Orthogonal least squares algorithm for radial basis function networks. IEEE Trans. Neural Networks. 2(2):1991;302-309.
    • (1991) IEEE Trans. Neural Networks , vol.2 , Issue.2 , pp. 302-309
    • Chen, S.1    Cowan, C.F.N.2    Grant, P.M.3
  • 15
    • 0036606350 scopus 로고    scopus 로고
    • The significance of crop co-states for receding horizon optimal control of greenhouse climate
    • van Straten G., van Willigenburg L.G., Tap R.F. The significance of crop co-states for receding horizon optimal control of greenhouse climate. Control Eng. Pract. 10:2002;625-632.
    • (2002) Control Eng. Pract. , vol.10 , pp. 625-632
    • Van Straten, G.1    Van Willigenburg, L.G.2    Tap, R.F.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.