-
1
-
-
0036948790
-
Packing 2-dimensional bins in harmony
-
A. Caprara. Packing 2-dimensional bins in harmony. In Foundations of Computer Science, pages 490-499, 2002.
-
(2002)
Foundations of Computer Science
, pp. 490-499
-
-
Caprara, A.1
-
4
-
-
0002026363
-
Approximation algorithms for bin packing: A survey
-
D. Hochbaum, editor. PWS Publishing, Boston
-
E.G. Coffman, M.R. Garey, and D.S. Johnson. Approximation algorithms for bin packing: a survey. In D. Hochbaum, editor, Approximation algorithms for NP-hard problems, pages 46-93. PWS Publishing, Boston, 1996.
-
(1996)
Approximation Algorithms for NP-hard Problems
, pp. 46-93
-
-
Coffman, E.G.1
Garey, M.R.2
Johnson, D.S.3
-
5
-
-
0000586245
-
Performance bounds for level-oriented two dimensional packing algorithms
-
E. G. Coffman, M. R. Garey, D. S. Johnson and R. B. Tarjan. Performance bounds for level-oriented two dimensional packing algorithms. SIAM J. Computing 9 (1980), pages 808-826.
-
(1980)
SIAM J. Computing
, vol.9
, pp. 808-826
-
-
Coffman, E.G.1
Garey, M.R.2
Johnson, D.S.3
Tarjan, R.B.4
-
7
-
-
84958955366
-
On-line packing and covering problems
-
editors A. Fiat and G. Woeginger
-
J. Crisik and G. Woeginger. On-line packing and covering problems. In Online Algorithms: The State of the Art, editors A. Fiat and G. Woeginger, pages 147-177, 1998.
-
(1998)
Online Algorithms: The State of the Art
, pp. 147-177
-
-
Crisik, J.1
Woeginger, G.2
-
8
-
-
51249181640
-
Bin packing can be solved within 1 + ε in linear time
-
W. Fernandez de la Vega and G. Lueker. Bin packing can be solved within 1 + ε in linear time. Combinatorica, 1:349-355, 1981.
-
(1981)
Combinatorica
, vol.1
, pp. 349-355
-
-
Fernandez de la Vega, W.1
Lueker, G.2
-
9
-
-
1842498543
-
Optimal online bounded space multidimensional packing
-
L. Epstein and R. Van Stee. Optimal online bounded space multidimensional packing, These proceedings.
-
These Proceedings
-
-
Epstein, L.1
Van Stee, R.2
-
10
-
-
0013367990
-
Packing squares into squares
-
C. E. Ferreira, F. K. Miyazawa, and Y. Wakabayashi. Packing squares into squares. Pesquisa Operacional, 19(2):223-237, 1999.
-
(1999)
Pesquisa Operacional
, vol.19
, Issue.2
, pp. 223-237
-
-
Ferreira, C.E.1
Miyazawa, F.K.2
Wakabayashi, Y.3
-
12
-
-
0025855578
-
Maximum bounded 3-dimensional matching is MAX SNP-complete
-
V. Kann. Maximum bounded 3-dimensional matching is MAX SNP-complete. Information Processing Letters, 37:27-35, 1991.
-
(1991)
Information Processing Letters
, vol.37
, pp. 27-35
-
-
Kann, V.1
-
13
-
-
0020252446
-
An efficient approximation scheme for the one-dimensional bin-packing problem
-
N. Karmarkar and R. M. Karp. An efficient approximation scheme for the one-dimensional bin-packing problem. In Foundations of Computer Science (FOCS), pages 312-320, 1982.
-
(1982)
Foundations of Computer Science (FOCS)
, pp. 312-320
-
-
Karmarkar, N.1
Karp, R.M.2
-
15
-
-
1842603139
-
Multidimensional cube packing
-
Y. Kohayakawa, F.K. Miyazawa, P. Raghavan, and Y. Wakabayashi. Multidimensional cube packing. In Brazilian Symposium on Graphs, Algorithms and Combinatorics, 2001.
-
(2001)
Brazilian Symposium on Graphs, Algorithms and Combinatorics
-
-
Kohayakawa, Y.1
Miyazawa, F.K.2
Raghavan, P.3
Wakabayashi, Y.4
-
16
-
-
0025521123
-
Packing Squares into a Square
-
J. Y. T. Leung, T. W. Tam, C. S. Wong, G. H. Young and F. Y. L. Chin. Packing Squares into a Square. Journal of Parallel and Distributed Computing, 10: 271-275, 1990.
-
(1990)
Journal of Parallel and Distributed Computing
, vol.10
, pp. 271-275
-
-
Leung, J.Y.T.1
Tam, T.W.2
Wong, C.S.3
Young, G.H.4
Chin, F.Y.L.5
-
17
-
-
0001326115
-
The hardness of approximation: Gap location
-
E. Petrank. The hardness of approximation: gap location. Computational Complexity, 4:133-157, 1994.
-
(1994)
Computational Complexity
, vol.4
, pp. 133-157
-
-
Petrank, E.1
-
18
-
-
0942279287
-
New bounds for multi-dimensional packing
-
S. Seiden and R. van Stee. New bounds for multi-dimensional packing. Algorithmica, 36(3):261-293, 2003.
-
(2003)
Algorithmica
, vol.36
, Issue.3
, pp. 261-293
-
-
Seiden, S.1
Van Stee, R.2
-
20
-
-
0000930151
-
There is no asymptotic PTAS for two-dimensional vector packing
-
G. Woeginger. There is no asymptotic PTAS for two-dimensional vector packing. Information Processing Letters, 64:293-297, 1997.
-
(1997)
Information Processing Letters
, vol.64
, pp. 293-297
-
-
Woeginger, G.1
|