-
1
-
-
0027658970
-
Counts of all walks as atomic and molecular descriptors
-
Rücker, G.; Rücker, C. Counts of All Walks as Atomic and Molecular Descriptors. J. Chem. Inf. Comput. Sci. 1993, 33, 683-695.
-
(1993)
J. Chem. Inf. Comput. Sci.
, vol.33
, pp. 683-695
-
-
Rücker, G.1
Rücker, C.2
-
2
-
-
0041037845
-
On topological indices, boiling points, and cycloalkanes
-
Rücker, G.; Rücker, C. On Topological Indices, Boiling Points, and Cycloalkanes. J. Chem. Inf. Comput. Sci. 1999, 39, 788-802.
-
(1999)
J. Chem. Inf. Comput. Sci.
, vol.39
, pp. 788-802
-
-
Rücker, G.1
Rücker, C.2
-
3
-
-
0002525670
-
Walk counts, labyrinthicity, and complexity of acyclic and cyclic graphs and molecules
-
Rücker, G.; Rücker, C. Walk Counts, Labyrinthicity, and Complexity of Acyclic and Cyclic Graphs and Molecules. J. Chem. Inf. Comput. Sci. 2000, 40, 99-106.
-
(2000)
J. Chem. Inf. Comput. Sci.
, vol.40
, pp. 99-106
-
-
Rücker, G.1
Rücker, C.2
-
4
-
-
0035526172
-
Substructure, subgraph, and walk counts as measures of the complexity of graphs and molecules
-
Rücker, G.; Rücker C. Substructure, Subgraph, and Walk Counts as Measures of the Complexity of Graphs and Molecules. J. Chem. Inf. Comput. Sci. 2001, 41, 1457-1462.
-
(2001)
J. Chem. Inf. Comput. Sci.
, vol.41
, pp. 1457-1462
-
-
Rücker, G.1
Rücker, C.2
-
5
-
-
0345822878
-
On molecular complexity indices
-
Rouvray, D. H., Bonchev, D., Eds.; Francis & Taylor: London
-
Nikolić, S.; Trinajstić, N.; Tolić, I. M.; Rücker, G.; Rücker, C. On Molecular Complexity Indices, In Complexity in Chemistry; Rouvray, D. H., Bonchev, D., Eds.; Francis & Taylor: London, 2003.
-
(2003)
Complexity in Chemistry
-
-
Nikolić, S.1
Trinajstić, N.2
Tolić, I.M.3
Rücker, G.4
Rücker, C.5
-
6
-
-
0003780715
-
-
Addison-Wesley: Reading, MA
-
Harary, F. Graph Theory; Addison-Wesley: Reading, MA, 1969.
-
(1969)
Graph Theory
-
-
Harary, F.1
-
9
-
-
84972506692
-
The spectral approach to determining the number of walks in a graph
-
Harary, F.; Schwenk, A. J. The Spectral Approach to Determining the Number of Walks in a Graph. Pac. J. Math. 1979, 80, 443-449.
-
(1979)
Pac. J. Math.
, vol.80
, pp. 443-449
-
-
Harary, F.1
Schwenk, A.J.2
-
10
-
-
0028428113
-
Mathematical relation between extended connectivity and eigenvector coefficients
-
Rücker, C.; Rücker, G. Mathematical Relation between Extended Connectivity and Eigenvector Coefficients. J. Chem. Inf. Comput. Sci. 1994, 34, 534-538.
-
(1994)
J. Chem. Inf. Comput. Sci.
, vol.34
, pp. 534-538
-
-
Rücker, C.1
Rücker, G.2
-
11
-
-
0035353668
-
On walks in molecular graphs
-
Gutman, L; Rücker, C.; Rücker, G. On Walks in Molecular Graphs. J. Chem. Inf. Compta. Sci. 2001, 41, 739-745.
-
(2001)
J. Chem. Inf. Compta. Sci.
, vol.41
, pp. 739-745
-
-
Gutman, L.1
Rücker, C.2
Rücker, G.3
-
12
-
-
0036347081
-
On kites, comets, and stars. Sums of eigenvector coefficients in (molecular) graphs
-
Rücker, G.; Rücker, C.; Gutman, I. On Kites, Comets, and Stars. Sums of Eigenvector Coefficients in (Molecular) Graphs. Z Naturforsch. A 2002, 57a, 143-153.
-
(2002)
Z Naturforsch. A
, vol.57 A
, pp. 143-153
-
-
Rücker, G.1
Rücker, C.2
Gutman, I.3
-
13
-
-
0042200772
-
-
note
-
2 over the indices i belonging to the same eigenspace is uniquely determined, see ref 10.
-
-
-
-
14
-
-
0041700250
-
-
note
-
1).
-
-
-
-
15
-
-
0043203080
-
-
note
-
This is also true in the case of degenerate eigenvalues, as can be shown.
-
-
-
-
16
-
-
0041700251
-
-
note
-
0 is the smallest absolute value of a nonnull element of M.
-
-
-
-
17
-
-
0041700282
-
On walk counts and complexity of general graphs
-
Lukovits, I.; Milicević, A.; Nikolić, S.; Trinajstić, N. On Walk Counts and Complexity of General Graphs. Internet Electron. J. Mol. Des. 2002, 1, 388-400, http://www.biochempress.com.
-
(2002)
Internet Electron. J. Mol. Des.
, vol.1
, pp. 388-400
-
-
Lukovits, I.1
Milicević, A.2
Nikolić, S.3
Trinajstić, N.4
|