메뉴 건너뛰기




Volumn 16, Issue 1, 2005, Pages 160-166

Kernel method-based fuzzy clustering algorithm

Author keywords

Fuzzy C means clustering; Fuzzy clustering analysis; Kernel method

Indexed keywords

FKCM ALGORITHM; FUZZY C-MEANS CLUSTERING; FUZZY CLUSTERING ANALYSIS; KERNEL METHOD;

EID: 18344392121     PISSN: 16711793     EISSN: None     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (16)

References (15)
  • 2
    • 0023561847 scopus 로고
    • Convergence theory for fuzzy c-means: Counterexamples and repaires
    • Bezdek J C. Convergence theory for fuzzy c-means: counterexamples and repaires. IEEE Trans. on SMC, 1987, 17: 873-877.
    • (1987) IEEE Trans. on SMC , vol.17 , pp. 873-877
    • Bezdek, J.C.1
  • 4
    • 0002615660 scopus 로고    scopus 로고
    • Geometry and invariance in kernel based methods
    • Scholkopf B., Bulges C. and Smola A. (ed.), Cambridge, MA: MIT Press, Cambridge
    • Surges C J C. Geometry and invariance in kernel based methods. In Scholkopf B, Bulges C, Smola A, Eds. Advance in Kernel Methods-Support Vector Learning. Cambridge, MA: MIT Press, Cambridge, 1999. 89-116.
    • (1999) Advance in Kernel Methods-Support Vector Learning , pp. 89-116
    • Surges, C.J.C.1
  • 5
    • 0001134192 scopus 로고    scopus 로고
    • The use of faces to represent points in k-dimensional space graphically
    • Chernoff D F. The use of faces to represent points in k-dimensional space graphically. Journal of American Statistic Association, 1999, 58(342): 361-368.
    • (1999) Journal of American Statistic Association , vol.58 , Issue.342 , pp. 361-368
    • Chernoff, D.F.1
  • 6
    • 0026897712 scopus 로고
    • Generalized fuzzy c-shell clustering and detection of circular and elliptical boundaries
    • Dave R N. Generalized fuzzy c-shell clustering and detection of circular and elliptical boundaries. Pattern Recognition, 1992, 25(7): 639-641.
    • (1992) Pattern Recognition , vol.25 , Issue.7 , pp. 639-641
    • Dave, R.N.1
  • 7
    • 0004140078 scopus 로고    scopus 로고
    • An analysis of recent work on clustering algorithms
    • Technical Report 01-03-02. Department of Computer Science and Engineering, University of Washington, Seattle, WA 98195
    • Fasulo D. An analysis of recent work on clustering algorithms. 1999, Technical Report 01-03-02. Department of Computer Science and Engineering, University of Washington, Seattle, WA 98195.
    • (1999)
    • Fasulo, D.1
  • 8
    • 0034484020 scopus 로고    scopus 로고
    • Advances in theory and applications of fuzzy clustering
    • Gao X B, Xie W X. Advances in theory and applications of fuzzy clustering. Chinese Science Bulletin, 2000, 45(11): 961-970.
    • (2000) Chinese Science Bulletin , vol.45 , Issue.11 , pp. 961-970
    • Gao, X.B.1    Xie, W.X.2
  • 10
    • 0036565280 scopus 로고    scopus 로고
    • Mercer kernel based clustering in feature space
    • Girolami M. Mercer kernel based clustering in feature space. IEEE Trans. on Neural Networks, 2002, 13(3): 780-784.
    • (2002) IEEE Trans. on Neural Networks , vol.13 , Issue.3 , pp. 780-784
    • Girolami, M.1
  • 11
    • 0003878103 scopus 로고    scopus 로고
    • Extended fuzzy clustering algorithm
    • Kaymak U, Setnes M. Extended fuzzy clustering algorithm. From URL: http://www.eur.nl/WebDOC/doc/erim/erimrs20001123094510.pdf, 2000.
    • (2000)
    • Kaymak, U.1    Setnes, M.2
  • 12
    • 0000916750 scopus 로고
    • The fuzzy c qadric shell clustering algorithm and the detection of second-degree
    • Krishnapuram R, Frigui H, Nasraui O. The fuzzy c qadric shell clustering algorithm and the detection of second-degree. Pattern Recognition Letters, 1993, 14(7): 545-552.
    • (1993) Pattern Recognition Letters , vol.14 , Issue.7 , pp. 545-552
    • Krishnapuram, R.1    Frigui, H.2    Nasraui, O.3
  • 13
    • 0035272287 scopus 로고    scopus 로고
    • An introduction to kernel-based learning algorithms
    • Muller K, Mika S, Ratsch G, et al. An introduction to kernel-based learning algorithms. IEEE Tran. Neural Networks, 2001, 12(2): 181-201.
    • (2001) IEEE Tran. Neural Networks , vol.12 , Issue.2 , pp. 181-201
    • Muller, K.1    Mika, S.2    Ratsch, G.3
  • 14
    • 0032594954 scopus 로고    scopus 로고
    • Input space versus feature space in kernel-based methods
    • Scholkopf B, Mika S, Surges C, et al. Input space versus feature space in kernel-based methods. IEEE Tran. Neural Networks, 1999, 10(5): 1000-1017.
    • (1999) IEEE Tran. Neural Networks , vol.10 , Issue.5 , pp. 1000-1017
    • Scholkopf, B.1    Mika, S.2    Surges, C.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.