-
1
-
-
18344373237
-
-
Academic, New York
-
Cavity Quantum Electrodynamics, Advances in Atomic, Molecular and Optical Physics, edited by P. Berman (Academic, New York, 1994), Suppl. 2.
-
(1994)
Cavity Quantum Electrodynamics, Advances in Atomic, Molecular and Optical Physics
, Issue.2 SUPPL.
-
-
Berman, P.1
-
2
-
-
18344373956
-
-
For a more recent review, see contributions in the special issue of Phys. Scr. T76, 1 (1998).
-
(1998)
Phys. Scr.
, vol.T76
, Issue.SPEC. ISSUE
, pp. 1
-
-
-
4
-
-
0000803960
-
-
C.J. Hood, M.S. Chapman, T.W. Lynn, and H.J. Kimble, Phys. Rev. Lett. 80, 4157 (1998).
-
(1998)
Phys. Rev. Lett.
, vol.80
, pp. 4157
-
-
Hood, C.J.1
Chapman, M.S.2
Lynn, T.W.3
Kimble, H.J.4
-
7
-
-
0034712128
-
-
C.J. Hood et al., Science 287, 1447 (2000).
-
(2000)
Science
, vol.287
, pp. 1447
-
-
Hood, C.J.1
-
8
-
-
0034704744
-
-
P.W.H. Pinkse, T. Fischer, P. Maunz, and G. Rempe, Nature (London) 404, 365 (2000).
-
(2000)
Nature (London)
, vol.404
, pp. 365
-
-
Pinkse, P.W.H.1
Fischer, T.2
Maunz, P.3
Rempe, G.4
-
11
-
-
84956214861
-
-
B.-G. Englert, J. Schwinger, A.O. Barut, and M.O. Scully, Europhys. Lett. 14, 25 (1991).
-
(1991)
Europhys. Lett.
, vol.14
, pp. 25
-
-
Englert, B.-G.1
Schwinger, J.2
Barut, A.O.3
Scully, M.O.4
-
12
-
-
2242491318
-
-
H. Mabuchi, Q.A. Turchette, M.S. Chapman, and H.J. Kimble, Opt. Lett. 21, 1393 (1996).
-
(1996)
Opt. Lett.
, vol.21
, pp. 1393
-
-
Mabuchi, H.1
Turchette, Q.A.2
Chapman, M.S.3
Kimble, H.J.4
-
13
-
-
0343311634
-
-
International Quantum Electronics Conference, Optical Society of America, Washington, D.C.
-
A.S. Parkins, in International Quantum Electronics Conference, 1996 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1996), p. 26.
-
(1996)
1996 OSA Technical Digest Series
, pp. 26
-
-
Parkins, A.S.1
-
18
-
-
0032795171
-
-
P. Münstermann, T. Fischer, P.W.H. Pinkse, and G. Rempe, Opt. Commun. 159, 63 (1999).
-
(1999)
Opt. Commun.
, vol.159
, pp. 63
-
-
Münstermann, P.1
Fischer, T.2
Pinkse, P.W.H.3
Rempe, G.4
-
21
-
-
0031189217
-
-
A.C. Doherty, A.S. Parkins, S.M. Tan, and D.F. Walls, Phys. Rev. A 56, 833 (1997).
-
(1997)
Phys. Rev. A
, vol.56
, pp. 833
-
-
Doherty, A.C.1
Parkins, A.S.2
Tan, S.M.3
Walls, D.F.4
-
22
-
-
0000289814
-
-
G. Hechenblaikner, M. Gangl, P. Horak, and H. Risch, Phys. Rev. A 58, 3030 (1998).
-
(1998)
Phys. Rev. A
, vol.58
, pp. 3030
-
-
Hechenblaikner, G.1
Gangl, M.2
Horak, P.3
Risch, H.4
-
29
-
-
0038633443
-
-
edited by J. Dalibard, J. M. Raimond, and J. Zinn-Justin Elsevier, Amsterdam
-
C. Cohen-Tannoudji, in Fundamental Systems in Quantum Optics, Les Houches, Session LIII, 1990, edited by J. Dalibard, J. M. Raimond, and J. Zinn-Justin (Elsevier, Amsterdam, 1992), pp. 1-164.
-
(1992)
Fundamental Systems in Quantum Optics, Les Houches, Session LIII, 1990
, pp. 1-164
-
-
Cohen-Tannoudji, C.1
-
30
-
-
0012476632
-
-
K. Berg-Sorensen, Y. Castin, E. Bonderup, and K. Molmer, J. Phys. B 25, 4195 (1992).
-
(1992)
J. Phys. B
, vol.25
, pp. 4195
-
-
Berg-Sorensen, K.1
Castin, Y.2
Bonderup, E.3
Molmer, K.4
-
33
-
-
0004161838
-
-
Cambridge University Press, Cambridge
-
W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery, Numerical Recipes in C: The Art of Scientific Computing, 2nd ed. (Cambridge University Press, Cambridge, 1992).
-
(1992)
Numerical Recipes in C: The Art of Scientific Computing, 2nd Ed.
-
-
Press, W.H.1
Teukolsky, S.A.2
Vetterling, W.T.3
Flannery, B.P.4
-
34
-
-
85015784409
-
-
note
-
2 in the case of Ref. [7] reflects the fact that photon counting was employed in Ref. [8], while detection was via heterodyne in Ref. [7].
-
-
-
-
35
-
-
85015732303
-
-
note
-
Technical noise arises from imperfections in the cavity lock (in particular, a mechanical resonance in the cavity mount at 60 kHz), and contributes a signal ≃50-100% of the shot noise rms amplitude.
-
-
-
-
36
-
-
85015732111
-
-
note
-
A digital filter is employed, using the built-in Matlab Butterworth filter routine butter [5,0.01] for the simulations of Hood et al. [Fig. 10(b)], and butter [3,0.004] for the simulations of Pinkse et al. (Fig. 13). In each case, the first parameter refers to the order of the filter, and the second to the cutoff frequency as a fraction of the Nyquist frequency (a sample rate of 0.2 μs was used in the simulations.) In each case, parameters are chosen in an attempt to optimally extract information about radial oscillations from the transmission signal. The filter cutoff chosen for the Pinkse et al. simulations was the lowest that could still track genuine radial motion of an atom passing through the cavity.
-
-
-
|