-
1
-
-
85037248065
-
-
A. Einstein, Verhandlungen der Deutschen Physikalischen Gesellschaft (Fried-Vieweg & Son, Braunschweig, 1917). For an English translation see C. Jaffé, Joint Institute for Laboratory Astrophysics (JILA), Report No. 116 (1980)
-
A. Einstein, Verhandlungen der Deutschen Physikalischen Gesellschaft (Fried-Vieweg & Son, Braunschweig, 1917). For an English translation see C. Jaffé, Joint Institute for Laboratory Astrophysics (JILA), Report No. 116 (1980).
-
-
-
-
2
-
-
0004285220
-
-
Cambridge University Press, Cambridge
-
T. F. Gallagher, Rydberg Atoms (Cambridge University Press, Cambridge, 1994).
-
(1994)
Rydberg Atoms
-
-
Gallagher, T.F.1
-
4
-
-
85037185582
-
-
Atoms and Molecules in Strong External Fields, edited by P. Schmelcher and W. Schweizer (Plenum Press, New York, 1998.)
-
Atoms and Molecules in Strong External Fields, edited by P. Schmelcher and W. Schweizer (Plenum Press, New York, 1998.)
-
-
-
-
5
-
-
85037234572
-
-
W. Schweizer, Das diamagnetische Wasserstoffatom: Ein Beispiel für Chaos in der Quantenmechanik (Verlag Harri Deutsch, Frankfurt am Main, 1995) (in German)
-
W. Schweizer, Das diamagnetische Wasserstoffatom: Ein Beispiel für Chaos in der Quantenmechanik (Verlag Harri Deutsch, Frankfurt am Main, 1995) (in German).
-
-
-
-
6
-
-
85037217448
-
-
J.-P. Connerade, Highly Excited Atoms (Cambridge University Press, Cambridge, 1998)
-
J.-P. Connerade, Highly Excited Atoms (Cambridge University Press, Cambridge, 1998).
-
-
-
-
11
-
-
5544258610
-
-
W. Schweizer, M. Schaich, W. Jans, and H. Ruder, Phys. Lett. A 189, 64 (1994).
-
(1994)
Phys. Lett. A
, vol.189
, pp. 64
-
-
Schweizer, W.1
Schaich, M.2
Jans, W.3
Ruder, H.4
-
13
-
-
0003769394
-
-
Elsevier Science
-
E. J. Heller, in Chaos and Quantum Physics, Les Houches, Session LII, edited by A. Voros, and J. Zinn-Justin, M.-J. Giannoni (Elsevier Science, 1989), p. 547.
-
(1989)
Chaos and Quantum Physics, Les Houches, Session LII
, pp. 547
-
-
Heller, E.J.1
-
15
-
-
0001275122
-
-
P. A. Dando, T. S. Monteiro, W. Jans, and W. Schweizer, Prog. Theor. Phys. Suppl. 116, 403 (1994).
-
(1994)
Prog. Theor. Phys. Suppl.
, vol.116
, pp. 403
-
-
Dando, P.A.1
Monteiro, T.S.2
Jans, W.3
Schweizer, W.4
-
17
-
-
0038464056
-
-
W. Schweizer, R. Niemeier, G. Wunner, and H. Ruder, Z. Phys. D 25, 95 (1993).
-
(1993)
Z. Phys. D
, vol.25
, pp. 95
-
-
Schweizer, W.1
Niemeier, R.2
Wunner, G.3
Ruder, H.4
-
20
-
-
0040591730
-
-
K. T. Lu, F. S. Tomkins, and W. R. S. Garton, Proc. R. Soc. London, Ser. A 362, 421 (1978).
-
(1978)
Proc. R. Soc. London, Ser. A
, vol.362
, pp. 421
-
-
Lu, K.T.1
Tomkins, F.S.2
Garton, W.R.S.3
-
21
-
-
0038210145
-
-
W. Schweizer, R. Niemeier, H. Friedrich, G. Wunner, and H. Ruder, Phys. Rev. A 38, 1724 (1988).
-
(1988)
Phys. Rev. A
, vol.38
, pp. 1724
-
-
Schweizer, W.1
Niemeier, R.2
Friedrich, H.3
Wunner, G.4
Ruder, H.5
-
24
-
-
85037179653
-
-
By an isochrone bifurcation a pair of stable/unstable trajectories is created, which have at the bifurcation point an identical period, action, and shape. Both trajectories are created from a single phase space point and they have no other orbit as a successor. By computing the Poincaré map or the (Formula presented) repetition of the Poincaré map for (Formula presented) periodic trajectories one can see the following behavior: Shortly before the bifurcation happens the Poincaré map (or its (Formula presented) iterate) does not cross itself and no fixed point exists, but when the bifurcation takes place the map crosses itself and after increasing the energy two different fixed point become visible. Each one corresponds to a periodic trajectory which did not exist at lower energy and which had no successor. For more details see
-
By an isochrone bifurcation a pair of stable/unstable trajectories is created, which have at the bifurcation point an identical period, action, and shape. Both trajectories are created from a single phase space point and they have no other orbit as a successor. By computing the Poincaré map or the (Formula presented) repetition of the Poincaré map for (Formula presented) periodic trajectories one can see the following behavior: Shortly before the bifurcation happens the Poincaré map (or its (Formula presented) iterate) does not cross itself and no fixed point exists, but when the bifurcation takes place the map crosses itself and after increasing the energy two different fixed point become visible. Each one corresponds to a periodic trajectory which did not exist at lower energy and which had no successor. For more details see
-
-
-
-
25
-
-
0007668179
-
-
M. A. M. De Aguiar, C. P. Malta, M. Baranger, and K. T. R. Davis, Ann. Phys. (N.Y.) 180, 167 (1987)
-
(1987)
Ann. Phys. (N.Y.)
, vol.180
, pp. 167
-
-
De Aguiar, M.A.M.1
Malta, C.P.2
Baranger, M.3
Davis, K.T.R.4
-
29
-
-
85037242993
-
-
M. C. Gutzwiller, Chaos in Classical and Quantum Mechanics (Springer-Verlag. New York, 1990).
-
-
-
Gutzwiller, M.C.1
|