메뉴 건너뛰기




Volumn 84, Issue 4, 2005, Pages 341-349

Multiple solutions for three-point boundary value problem with nonlinear terms depending on the first order derivative

Author keywords

[No Author keywords available]

Indexed keywords


EID: 18244385492     PISSN: 0003889X     EISSN: None     Source Type: Journal    
DOI: 10.1007/s00013-004-1196-7     Document Type: Article
Times cited : (37)

References (15)
  • 1
    • 0000384611 scopus 로고
    • Nonlocal boundary value problems of the first kind for a Sturm-Liouville operator in its differential and finite difference aspects
    • V. A. IL'IN and E. I. MOISEEV, Nonlocal boundary value problems of the first kind for a Sturm-Liouville operator in its differential and finite difference aspects. Differential Equ. 23 (7), 803-810 (1987).
    • (1987) Differential Equ. , vol.23 , Issue.7 , pp. 803-810
    • Il'in, V.A.1    Moiseev, E.I.2
  • 2
    • 0000384610 scopus 로고
    • Nonlocal boundary value problems of the second kind for a Sturm-Liouville operator in its differential and finite difference aspects
    • V. A. IL'IN and E. I. MOISEEV, Nonlocal boundary value problems of the second kind for a Sturm-Liouville operator in its differential and finite difference aspects. Differential Equ. 23 (8), 979-987 (1987).
    • (1987) Differential Equ. , vol.23 , Issue.8 , pp. 979-987
    • Il'in, V.A.1    Moiseev, E.I.2
  • 3
    • 0036537575 scopus 로고    scopus 로고
    • Triple solutions for second order three-point boundary value problems
    • X. HE and W. GE, Triple solutions for second order three-point boundary value problems. J. Math. Anal. Appl. 268, 256-265 (2002).
    • (2002) J. Math. Anal. Appl. , vol.268 , pp. 256-265
    • He, X.1    Ge, W.2
  • 4
    • 0034230647 scopus 로고    scopus 로고
    • Multiplicity of positive solutions for a second-order three-point boundary value problems
    • R. MA, Multiplicity of positive solutions for a second-order three-point boundary value problems. Comput. Math. Appl. 40, 193-204 (2000).
    • (2000) Comput. Math. Appl. , vol.40 , pp. 193-204
    • Ma, R.1
  • 5
    • 3342898092 scopus 로고    scopus 로고
    • Positive solutions of a nonlinear three-point boundary value problems
    • R. MA, Positive solutions of a nonlinear three-point boundary value problems. Electron J. Differential Equ. 34, 1-8 (1999).
    • (1999) Electron J. Differential Equ. , vol.34 , pp. 1-8
    • Ma, R.1
  • 6
    • 0036698158 scopus 로고    scopus 로고
    • Solutions to second-order three-point problems on time scales
    • D. ANDERSON, Solutions to second-order three-point problems on time scales. J. Difference Equ. Appl. 8, 673-688 (2002).
    • (2002) J. Difference Equ. Appl. , vol.8 , pp. 673-688
    • Anderson, D.1
  • 7
    • 0036630686 scopus 로고    scopus 로고
    • Positive solutions of a nonlinear three-point boundary value problems
    • B. LIU, Positive solutions of a nonlinear three-point boundary value problems. Comput. Math. Appl. 44, 201-211 (2002).
    • (2002) Comput. Math. Appl. , vol.44 , pp. 201-211
    • Liu, B.1
  • 8
    • 0037409273 scopus 로고    scopus 로고
    • Multiplicity results for a three-point boundary value problems at resonance
    • R. MA, Multiplicity results for a three-point boundary value problems at resonance. Nonlinear Anal. Theory, Meth. Appl. 53, 777-789 (2003).
    • (2003) Nonlinear Anal. Theory, Meth. Appl. , vol.53 , pp. 777-789
    • Ma, R.1
  • 9
    • 0042190138 scopus 로고    scopus 로고
    • Twin positive solutions for higher order m-point boundary value problems with sign changing nonlinearities
    • Y. GUO, W. GE and Y. GAO, Twin positive solutions for higher order m-point boundary value problems with sign changing nonlinearities. Appl. Math. Comput. 146, 299-311 (2003).
    • (2003) Appl. Math. Comput. , vol.146 , pp. 299-311
    • Guo, Y.1    Ge, W.2    Gao, Y.3
  • 10
    • 1242322174 scopus 로고    scopus 로고
    • Positive solutions for three-point boundary value problems with dependence on the first order derivative
    • Y. GUO and W. GE, Positive solutions for three-point boundary value problems with dependence on the first order derivative. J. Math. Anal. Appl. 290, 291-301 (2004).
    • (2004) J. Math. Anal. Appl. , vol.290 , pp. 291-301
    • Guo, Y.1    Ge, W.2
  • 11
    • 0034692193 scopus 로고    scopus 로고
    • Existence of multiple solutions for second order boundary value problems
    • J. HENDERSON and H. B. THOMPSON, Existence of multiple solutions for second order boundary value problems. J. Differential Equ. 166, 443-454 (2000).
    • (2000) J. Differential Equ. , vol.166 , pp. 443-454
    • Henderson, J.1    Thompson, H.B.2
  • 12
    • 3242699390 scopus 로고    scopus 로고
    • Existence of solution for a class of third order nonlinear boundary value problems
    • Z. DU, W. GE and X. LIN, Existence of solution for a class of third order nonlinear boundary value problems. J. Math. Anal. Appl. 294, 104-112 (2004).
    • (2004) J. Math. Anal. Appl. , vol.294 , pp. 104-112
    • Du, Z.1    Ge, W.2    Lin, X.3
  • 13
    • 0038182950 scopus 로고    scopus 로고
    • Solutions of 2nth lidstone boundary value problems and dependence on higher order derivatives
    • Z. BAI and W. GE, Solutions of 2nth lidstone boundary value problems and dependence on higher order derivatives. J. Math. Anal. Appl. 279, 442-450 (2003).
    • (2003) J. Math. Anal. Appl. , vol.279 , pp. 442-450
    • Bai, Z.1    Ge, W.2
  • 14
    • 0037139624 scopus 로고    scopus 로고
    • Upper and lower solution methods for fully nonlinear boundary value problems
    • J. EHME, P. W. ELOE and J. HENDERSON, Upper and lower solution methods for fully nonlinear boundary value problems. J. Differential Equ. 180, 51-64 (2002).
    • (2002) J. Differential Equ. , vol.180 , pp. 51-64
    • Ehme, J.1    Eloe, P.W.2    Henderson, J.3
  • 15
    • 0036642746 scopus 로고    scopus 로고
    • Existence of positive solutions for singular initial and boundary value problems via the classical upper and lower solution approach
    • R. P. AGARWAL, D. O'REGAN, LAKSHMIKANTHAM and S. LEELA, Existence of positive solutions for singular initial and boundary value problems via the classical upper and lower solution approach. Nonlinear Anal. Theory, Meth. Appl. 50, 215-222 (2002).
    • (2002) Nonlinear Anal. Theory, Meth. Appl. , vol.50 , pp. 215-222
    • Agarwal, R.P.1    O'Regan, D.2    Lakshmikantham3    Leela, S.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.