-
1
-
-
0033436565
-
On bounding the Betti numbers and computing the Euler characteristics of semi-algebraic sets
-
S. BASU (1999). On bounding the Betti numbers and computing the Euler characteristics of semi-algebraic sets. Discrete Comput. Geom. 22, 1-18.
-
(1999)
Discrete Comput. Geom.
, vol.22
, pp. 1-18
-
-
Basu, S.1
-
2
-
-
0031094481
-
On computing a set of points meeting every cell defined by a family of polynomials on a variety
-
S. BASU, R. POLLACK & M.-F. ROY (1997). On computing a set of points meeting every cell defined by a family of polynomials on a variety. J. Complexity 13, 28-37.
-
(1997)
J. Complexity
, vol.13
, pp. 28-37
-
-
Basu, S.1
Pollack, R.2
Roy, M.-F.3
-
3
-
-
0034411090
-
Computing roadmaps of semi-algebraic sets on a variety
-
S. BASU, R. POLLACK & M.-F. ROY (2000). Computing roadmaps of semi-algebraic sets on a variety. J. Amer. Math. Soc. 3, 55-82.
-
(2000)
J. Amer. Math. Soc.
, vol.3
, pp. 55-82
-
-
Basu, S.1
Pollack, R.2
Roy, M.-F.3
-
6
-
-
0022706013
-
The complexity of elementary algebra and geometry
-
M. BEN-OR, D. KOZEN & J. REIF (1986). The complexity of elementary algebra and geometry. J. Comput. System Sci. 32, 251-264.
-
(1986)
J. Comput. System Sci.
, vol.32
, pp. 251-264
-
-
Ben-Or, M.1
Kozen, D.2
Reif, J.3
-
8
-
-
0000463488
-
Homology theory for locally compact spaces
-
A. BOREL & J. C. MOORE (1960). Homology theory for locally compact spaces. Michigan Math. J. 7, 137-159.
-
(1960)
Michigan Math. J.
, vol.7
, pp. 137-159
-
-
Borel, A.1
Moore, J.C.2
-
9
-
-
0004987741
-
Computing roadmaps of general semi-algebraic sets
-
J. CANNY (1993). Computing roadmaps of general semi-algebraic sets. Comput. J. 36, 504-514.
-
(1993)
Comput. J.
, vol.36
, pp. 504-514
-
-
Canny, J.1
-
11
-
-
0039324762
-
Counting connected components of a semi-algebraic set in subexponential time
-
D. GRIGOR'EV & N. VOROBJOV (1992). Counting connected components of a semi-algebraic set in subexponential time. Comput. Complexity 2, 133-186.
-
(1992)
Comput. Complexity
, vol.2
, pp. 133-186
-
-
Grigor'Ev, D.1
Vorobjov, N.2
-
13
-
-
0001252807
-
Semi-algebraic local triviality in semi-algebraic mappings
-
R. M. HARDT (1980). Semi-algebraic local triviality in semi-algebraic mappings. Amer. J. Math. 102, 291-302.
-
(1980)
Amer. J. Math.
, vol.102
, pp. 291-302
-
-
Hardt, R.M.1
-
14
-
-
51249167424
-
Description of the connected components of a semialgebraic set in single exponential time
-
J. HEINTZ, M.-F. ROY & P. SOLERNÓ (1994). Description of the connected components of a semialgebraic set in single exponential time. Discrete Comput. Geom. 11, 121-140.
-
(1994)
Discrete Comput. Geom.
, vol.11
, pp. 121-140
-
-
Heintz, J.1
Roy, M.-F.2
Solernó, P.3
-
15
-
-
0000413093
-
Counting real zeros in the multivariate case
-
Computational Algebraic Geometry, F. Eyssette and A. Galligo (eds.), Birkhäuser
-
P. PEDERSEN, M.-F. ROY & A. SZPIRGLAS (1993). Counting real zeros in the multivariate case. In Computational Algebraic Geometry, F. Eyssette and A. Galligo (eds.), Progr. Math. 109, Birkhäuser, 203-224.
-
(1993)
Progr. Math.
, vol.109
, pp. 203-224
-
-
Pedersen, P.1
Roy, M.-F.2
Szpirglas, A.3
-
16
-
-
0001572510
-
On the computational complexity and geometry of the first-order theory of the reals
-
J. RENEGAR (1992). On the computational complexity and geometry of the first-order theory of the reals. J. Symbolic Comput. 13, 255-352.
-
(1992)
J. Symbolic Comput.
, vol.13
, pp. 255-352
-
-
Renegar, J.1
-
17
-
-
0002486960
-
Complexity of computation on real algebraic numbers
-
M.-F. ROY & A. SZPIRGLAS (1990). Complexity of computation on real algebraic numbers. J. Symbolic Comput. 10, 39-51.
-
(1990)
J. Symbolic Comput.
, vol.10
, pp. 39-51
-
-
Roy, M.-F.1
Szpirglas, A.2
|