-
1
-
-
0036013605
-
-
N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, Rev. Mod. Phys. 74, 145 (2002).
-
(2002)
Rev. Mod. Phys.
, vol.74
, pp. 145
-
-
Gisin, N.1
Ribordy, G.2
Tittel, W.3
Zbinden, H.4
-
2
-
-
0003259517
-
-
(IEEE, New York)
-
C. H. Bennet and G. Brassard, in Proceedings of IEEE International Conference on Computers, Systems and Signal Processing, Bangalore, India, 1984 (IEEE, New York, 1984), pp. 175-179.
-
(1984)
Proceedings of IEEE International Conference on Computers, Systems and Signal Processing, Bangalore, India, 1984
, pp. 175-179
-
-
Bennet, C.H.1
Brassard, G.2
-
5
-
-
0037171183
-
-
N.J. Cerf, M. Bourennane, A. Karlsson, and N. Gisin, Phys. Rev. Lett. 88, 127902 (2002).
-
(2002)
Phys. Rev. Lett.
, vol.88
, pp. 127902
-
-
Cerf, N.J.1
Bourennane, M.2
Karlsson, A.3
Gisin, N.4
-
6
-
-
0346698459
-
-
e-print quant-ph/0106049
-
M. Bourennane, A. Karlsson, G. Björk, N. Gisin, and N.J. Cerf, e-print quant-ph/0106049,.
-
-
-
Bourennane, M.1
Karlsson, A.2
Björk, G.3
Gisin, N.4
Cerf, N.J.5
-
8
-
-
0347328935
-
-
e-print quant-ph/0206170
-
D. Kaszlikowski, K. Chang, D.K.L. Oi, L.C. Kwek, and C.H. Oh, e-print quant-ph/0206170.
-
-
-
Kaszlikowski, D.1
Chang, K.2
Oi, D.K.L.3
Kwek, L.C.4
Oh, C.H.5
-
9
-
-
4043085342
-
-
T. Durt, N.J. Cerf, N. Gisin, and M. Zukowski, Phys. Rev. A 67, 012311 (2003).
-
(2003)
Phys. Rev. A
, vol.67
, pp. 012311
-
-
Durt, T.1
Cerf, N.J.2
Gisin, N.3
Zukowski, M.4
-
15
-
-
0347959166
-
-
note
-
By assumption, two orthonormal bases of an N-dimensional Hilbert space are said to be mutually unbiased if the norm of the scalar product between any two vectors each belonging to one of the bases is equal to 1/√N.
-
-
-
-
16
-
-
25744468494
-
-
(to be published), e-print quant-ph/021242
-
E. Brainis, L.-P. Lamoureux, N. J. Cerf, P. Emplit, M. Haelterman, and S. Massar, Phys. Rev. Lett. (to be published), e-print quant-ph/021242.
-
Phys. Rev. Lett.
-
-
Brainis, E.1
Lamoureux, L.-P.2
Cerf, N.J.3
Emplit, P.4
Haelterman, M.5
Massar, S.6
-
20
-
-
0347959163
-
-
note
-
The sum operator inside the kets is always defined modulo N.
-
-
-
-
21
-
-
0346067698
-
-
note
-
This is actually the state that Eve would prepare if she intercepted a state |ψ> sent by Alice. This indeed shows that sending |ψ> to Bob, or using the maximally entangled state, is equivalent for what concerns cloning.
-
-
-
-
24
-
-
5344222062
-
-
C.A. Fuchs, N. Gisin, R.B. Griffiths, C.-S. Niu, and A. Peres, Phys. Rev. A 56, 1163 (1997).
-
(1997)
Phys. Rev. A
, vol.56
, pp. 1163
-
-
Fuchs, C.A.1
Gisin, N.2
Griffiths, R.B.3
Niu, C.-S.4
Peres, A.5
-
25
-
-
0000354712
-
-
D. Bruss, M. Cinchetti, G.M. D'Ariano, and C. Macchiavello, Phys. Rev. A 62, 012302 (2000).
-
(2000)
Phys. Rev. A
, vol.62
, pp. 012302
-
-
Bruss, D.1
Cinchetti, M.2
D'Ariano, G.M.3
Macchiavello, C.4
-
27
-
-
0346698456
-
-
e-print quant-ph/0304149
-
T. Durt and B. Nagler, e-print quant-ph/0304149.
-
-
-
Durt, T.1
Nagler, B.2
-
29
-
-
85088491744
-
-
note
-
2-dimensional Hilbert space assigned to Eve (B and C).
-
-
-
-
31
-
-
0347328934
-
-
note
-
Of course this choice was not random. It was shown [5,30] that such a matrix clones all the states that belong to the two Fourier bases with the same fidelity. However there is no guarantee that there are no other matrices which have this property. If we demand covariance of the cloner state, we have the assurance that Eq. (45) is the only solution.
-
-
-
-
34
-
-
0347959160
-
-
(private communication)
-
N. Cerf (private communication).
-
-
-
Cerf, N.1
|