-
1
-
-
0002641260
-
Approximation theorems for independent and weakly dependent random vectors
-
Berkes, I., Philipp, W.: Approximation theorems for independent and weakly dependent random vectors. Ann. Probab. 7, 29-54 (1979)
-
(1979)
Ann. Probab.
, vol.7
, pp. 29-54
-
-
Berkes, I.1
Philipp, W.2
-
2
-
-
0043219507
-
Strong approximations of semimartingales by processes with independent increments
-
Besdziek, N.: Strong approximations of semimartingales by processes with independent increments. Probab. Theory Relat. Fields 87, 489-520 (1991)
-
(1991)
Probab. Theory Relat. Fields
, vol.87
, pp. 489-520
-
-
Besdziek, N.1
-
4
-
-
0038968242
-
Invariance principles for sums of Banach space valued random elements and empirical processes
-
Dudley, R.M., Philipp, W.: Invariance principles for sums of Banach space valued random elements and empirical processes. Z. Wahrscheinlichkeitstheor. Verw. Geb. 62, 509-552 (1983)
-
(1983)
Z. Wahrscheinlichkeitstheor. Verw. Geb.
, vol.62
, pp. 509-552
-
-
Dudley, R.M.1
Philipp, W.2
-
5
-
-
38249006081
-
Strong approximation of continuous time stochastic processes
-
Eberlein, E.: Strong approximation of continuous time stochastic processes. J. Multivariate Anal. 31, 220-235 (1989)
-
(1989)
J. Multivariate Anal.
, vol.31
, pp. 220-235
-
-
Eberlein, E.1
-
6
-
-
84986792436
-
On modelling questions in security valuation
-
Eberlein, E.: On modelling questions in security valuation. Math. Finance 2, 17-32 (1992)
-
(1992)
Math. Finance
, vol.2
, pp. 17-32
-
-
Eberlein, E.1
-
7
-
-
0041622309
-
Strong approximation of semimartingales and statistical processes
-
Eberlein, E., Römersperger, M.: Strong approximation of semimartingales and statistical processes. Probab. Theory Relat. Fields 104, 539-567 (1996)
-
(1996)
Probab. Theory Relat. Fields
, vol.104
, pp. 539-567
-
-
Eberlein, E.1
Römersperger, M.2
-
8
-
-
0040454032
-
Nearby variables with nearby conditional laws and a strong approximation theorem for Hilbert space valued Martingales
-
Monrad, D., Philipp, W.: Nearby variables with nearby conditional laws and a strong approximation theorem for Hilbert space valued Martingales. Probab. Theory Relat. Fields 88, 381-404 (1991)
-
(1991)
Probab. Theory Relat. Fields
, vol.88
, pp. 381-404
-
-
Monrad, D.1
Philipp, W.2
-
9
-
-
0043219499
-
Conditional versions of the Strassen-Dudley theorem
-
Dudley et al. (eds.). Boston Basel: Birkhäuser
-
Monrad, D., Philipp, W.: Conditional versions of the Strassen-Dudley theorem. In: Dudley et al. (eds.). Probability in Banach spaces 8, pp. 116-128. Boston Basel: Birkhäuser 1992
-
(1992)
Probability in Banach Spaces
, vol.8
, pp. 116-128
-
-
Monrad, D.1
Philipp, W.2
-
10
-
-
84968508604
-
An almost sure invariance principle for Hilbert space valued martingales
-
Morrow, G., Philipp, W.: An almost sure invariance principle for Hilbert space valued martingales. Trans. Am. Math. Soc. 273, 231-251 (1982)
-
(1982)
Trans. Am. Math. Soc.
, vol.273
, pp. 231-251
-
-
Morrow, G.1
Philipp, W.2
-
11
-
-
0043219501
-
A note on the almost sure approximation of weakly dependent random variables
-
Philipp, W.: A note on the almost sure approximation of weakly dependent random variables. Monatsh. Math. 102, 227-236 (1986)
-
(1986)
Monatsh. Math.
, vol.102
, pp. 227-236
-
-
Philipp, W.1
-
13
-
-
0001827930
-
On the extension of von Neumann-Aumann's theorem
-
Sainte-Beuve, M.-F.: On the extension of von Neumann-Aumann's theorem. J. Functional Anal. 17, 112-129 (1974)
-
(1974)
J. Functional Anal.
, vol.17
, pp. 112-129
-
-
Sainte-Beuve, M.-F.1
-
14
-
-
0000187772
-
An Invariance Principle for the Law of the Iterated Logarithm
-
Strassen, V.: An Invariance Principle for the Law of the Iterated Logarithm. Z. Wahrscheinlichkeitstheor. Verw. Geb. 3, 211-226 (1964)
-
(1964)
Z. Wahrscheinlichkeitstheor. Verw. Geb.
, vol.3
, pp. 211-226
-
-
Strassen, V.1
-
15
-
-
0043219497
-
Measures of dependence for processes in metric spaces
-
Strittmatter, W.: Measures of dependence for processes in metric spaces. Stochastics 27, 33-50 (1989)
-
(1989)
Stochastics
, vol.27
, pp. 33-50
-
-
Strittmatter, W.1
|