-
5
-
-
0035854465
-
-
D. A. Steck et al., Science 293, 274 (2001).
-
(2001)
Science
, vol.293
, pp. 274
-
-
Steck, D.A.1
-
7
-
-
0000974397
-
-
Cambridge University Press, Cambridge, England
-
Quantum Chaos: Between Order and Disorder, edited by G. Casati and B. Chirikov (Cambridge University Press, Cambridge, England, 1995); F.M. Izrailev, Phys. Rep. 196, 299 (1990).
-
(1995)
Quantum Chaos: between order and Disorder
-
-
Casati, G.1
Chirikov, B.2
-
8
-
-
0000974397
-
-
Quantum Chaos: Between Order and Disorder, edited by G. Casati and B. Chirikov (Cambridge University Press, Cambridge, England, 1995); F.M. Izrailev, Phys. Rep. 196, 299 (1990).
-
(1990)
Phys. Rep.
, vol.196
, pp. 299
-
-
Izrailev, F.M.1
-
11
-
-
18144370327
-
-
P. H. Joncs et al., quant-ph/0309149
-
P. H. Joncs et al., quant-ph/0309149.
-
-
-
-
18
-
-
39249085192
-
-
H. Schanz et al., Phys. Rev. Lett. 87, 070601 (2001); L. Hufnagel et al., ibid. 89, 154101 (2002).
-
(2001)
Phys. Rev. Lett.
, vol.87
, pp. 070601
-
-
Schanz, H.1
-
19
-
-
0037037901
-
-
H. Schanz et al., Phys. Rev. Lett. 87, 070601 (2001); L. Hufnagel et al., ibid. 89, 154101 (2002).
-
(2002)
Phys. Rev. Lett.
, vol.89
, pp. 154101
-
-
Hufnagel, L.1
-
27
-
-
0035335312
-
-
D. Dan et al., Phys. Rev. E 63, 056307 (2001).
-
(2001)
Phys. Rev. E
, vol.63
, pp. 056307
-
-
Dan, D.1
-
28
-
-
0003582543
-
-
Cambridge University Press, Cambridge, England
-
E. Ott, Chaos in Dynamical Systems (Cambridge University Press, Cambridge, England, 1993).
-
(1993)
Chaos in Dynamical Systems
-
-
Ott, E.1
-
30
-
-
0004201252
-
-
Harwood Academic Publishers, New York
-
R. Z. Sagdeev et al., Nonlinear Physics (Harwood Academic Publishers, New York, 1988).
-
(1988)
Nonlinear Physics
-
-
Sagdeev, R.Z.1
-
31
-
-
3543009193
-
-
G. Lindblad, Commun. Math. Phys. 48, 119 (1976); V. Gorini et al., J. Math. Phys. (N.Y.) 17, 821 (1976).
-
(1976)
Commun. Math. Phys.
, vol.48
, pp. 119
-
-
Lindblad, G.1
-
32
-
-
3543009193
-
-
G. Lindblad, Commun. Math. Phys. 48, 119 (1976); V. Gorini et al., J. Math. Phys. (N.Y.) 17, 821 (1976).
-
(1976)
J. Math. Phys. (N.Y.)
, vol.17
, pp. 821
-
-
Gorini, V.1
-
33
-
-
18144409361
-
-
note
-
These Lindblad operators can be obtained, similarly to [27], by considering the interaction between the system and a bosonic bath. The master equation (3) is then derived, at zero temperature, in the usual weak coupling and Markov approximations.
-
-
-
-
35
-
-
18144414216
-
-
note
-
There are also other similar parameter values where the system exhibits a simple or a chaotic attractor.
-
-
-
-
36
-
-
0001840092
-
-
The Husimi function is obtained from smoothing of the Wigner function on a scale of Planck constant; see, e.g., S.-J. Chang and K.-J. Shi, Phys. Rev. A 34, 7 (1986).
-
(1986)
Phys. Rev. A
, vol.34
, pp. 7
-
-
Chang, S.-J.1
Shi, K.-J.2
-
38
-
-
18144375490
-
-
note
-
That is to say, a repelling chaotic limit set.
-
-
-
-
39
-
-
18144422346
-
-
note
-
L. This is significantly larger than the experimental resolution equal to 0.03 [5].
-
-
-
|