메뉴 건너뛰기




Volumn 4, Issue 9, 2001, Pages 14-16

Collective refraction of a beam of electrons at a plasma-gas interface

Author keywords

[No Author keywords available]

Indexed keywords


EID: 18144385806     PISSN: 10984402     EISSN: 10984402     Source Type: Journal    
DOI: 10.1103/PhysRevSTAB.4.091301     Document Type: Article
Times cited : (20)

References (12)
  • 2
    • 0009458591 scopus 로고
    • (Hafner, New York), 2nd ed.
    • G. Joos, in Theoretical Physics (Hafner, New York, 1959), 2nd ed., p. 687.
    • (1959) Theoretical Physics , pp. 687
    • Joos, G.1
  • 6
    • 18144376470 scopus 로고    scopus 로고
    • note
    • The refraction of the particle beam considered here is quite different from other more familiar bending mechanisms for particle beams, for example, the bending of a beam by a magnetic field. Unlike the magnetic case, the bending here is a boundary effect. It is caused by a field free (initially) passive medium, and in this sense is analogous to optical refraction at a dielectric boundary.
  • 7
    • 0034207226 scopus 로고    scopus 로고
    • S. Lee, T. Katsouleas, R. Hemker, and W. B. Mori, Phys. Rev. E 61, 7014 (2000); R. Hemker, W. B. Mori, S. Lee, and T. Katsouleas, Phys. Rev. ST Accel. Beams 3, 061301 (2000).
    • (2000) Phys. Rev. e , vol.61 , pp. 7014
    • Lee, S.1    Katsouleas, T.2    Hemker, R.3    Mori, W.B.4
  • 9
    • 18144413237 scopus 로고    scopus 로고
    • note
    • When the beam center is near the boundary but still inside the plasma, some plasma electrons (the ones above the beam axis) are expelled from the plasma. These electrons are attracted back to the ion column after the passage of the beam. Once the beam crosses the boundary, all plasma electrons ahead of the beam will be blown inward and the simple physical description in the text applies.
  • 10
    • 0031117864 scopus 로고    scopus 로고
    • D. Whittum, Phys. Plasmas 4, 1154 (1997); The fields surrounding an axial slice of a relativistic beam depend only on the currents and charge in the same slice. This follows from developing the wave equation from Ampere's and Faraday's laws and noting that, for wakelike solutions and beams at speed near c, d/dz - (1/c)d/dt = 0. Thus fields at a slice can be found by assuming the slice to be an infinite cylinder.
    • (1997) Phys. Plasmas , vol.4 , pp. 1154
    • Whittum, D.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.