-
6
-
-
18044366995
-
-
S. Gukov, L. Motl, and A. Neitzke, hep-th/0404085
-
S. Gukov, L. Motl, and A. Neitzke, hep-th/0404085.
-
-
-
-
8
-
-
18044385631
-
-
note
-
2.
-
-
-
-
9
-
-
17044372438
-
-
Z. Bern, V. Del Duca, L.J. Dixon, and D.A. Kosower, Phys. Rev. D 71, 045006 (2005).
-
(2005)
Phys. Rev. D
, vol.71
, pp. 045006
-
-
Bern, Z.1
Del Duca, V.2
Dixon, L.J.3
Kosower, D.A.4
-
10
-
-
18044380570
-
-
note
-
Some savings could be achieved by writing down the amplitude from an "intermediate prescription," as out-lined in [7]. Given the miraculous cancellations we observe in this Letter, it is natural to wonder whether there is a similar cancellation between the terms appearing in such an expression, or between some of the 44 CSW diagrams. However, all of these terms individually depend on an arbitrary reference spinor η (which drops out of the full amplitude), and while it is likely that cancellations occur for certain clever choices of η, is it not a priori clear how to choose η to maximize the cancellations.
-
-
-
-
11
-
-
18044373318
-
-
note
-
This suggestion has also been made in [12], which appeared as this Letter was in preparation.
-
-
-
-
12
-
-
18044393001
-
-
Z. Bern, Lance J. Dixon, and D.A. Kosower, hep-th/0412210.
-
Z. Bern, Lance J. Dixon, and D.A. Kosower, hep-th/0412210.
-
-
-
-
13
-
-
18044372311
-
-
note
-
It would be interesting to see how many roots there are to the algebraic equations which de- scribe this amplitude as explained in [4]. Perhaps there is some relation between the number of roots and the number of terms in the most compact expression possible for a given amplitude.
-
-
-
-
14
-
-
0000632007
-
-
Z. Bern, L. J. Dixon, D.C. Dunbar, and D. A. Kosower, Nucl. Phys. B425, 217 (1994).
-
(1994)
Nucl. Phys.
, vol.B425
, pp. 217
-
-
Bern, Z.1
Dixon, L.J.2
Dunbar, D.C.3
Kosower, D.A.4
-
15
-
-
0003149712
-
-
Z. Bern, L.J. Dixon, D.C. Dunbar, and D.A. Kosower, Nucl. Phys. B435, 59 (1995).
-
(1995)
Nucl. Phys.
, vol.B435
, pp. 59
-
-
Bern, Z.1
Dixon, L.J.2
Dunbar, D.C.3
Kosower, D.A.4
-
19
-
-
18044381598
-
-
I. Bena, Z. Bern, D. A. Kosower, and R. Roiban, hep-th/0410054
-
I. Bena, Z. Bern, D. A. Kosower, and R. Roiban, hep-th/0410054.
-
-
-
-
20
-
-
18044386037
-
-
F. Cachazo, hep-th/0410077.
-
F. Cachazo, hep-th/0410077.
-
-
-
-
21
-
-
18044366252
-
-
M. Luo and C. Wen, hep-th/0410118
-
M. Luo and C. Wen, hep-th/0410118.
-
-
-
-
24
-
-
11244289590
-
-
J. Bedford, A. Brandhuber, B. Spence, and G. Travaglini, Nucl. Phys. B706, 100 (2005).
-
(2005)
Nucl. Phys.
, vol.B706
, pp. 100
-
-
Bedford, J.1
Brandhuber, A.2
Spence, B.3
Travaglini, G.4
-
25
-
-
12444344690
-
-
S.J. Bidder, N.E.J. Bjerrum-Bohr, L.J. Dixon, and D.C. Dunbar, Phys. Lett. B 606, 189 (2005).
-
(2005)
Phys. Lett. B
, vol.606
, pp. 189
-
-
Bidder, S.J.1
Bjerrum-Bohr, N.E.J.2
Dixon, L.J.3
Dunbar, D.C.4
-
27
-
-
18044388436
-
-
R. Britto, F. Cachazo, and B. Feng, hep-th/0412103
-
R. Britto, F. Cachazo, and B. Feng, hep-th/0412103.
-
-
-
-
28
-
-
18044398622
-
-
J. Bedford, A. Brandhuber, B. Spence, and G. Travaglini, hep-th/0412108
-
J. Bedford, A. Brandhuber, B. Spence, and G. Travaglini, hep-th/0412108.
-
-
-
-
35
-
-
18044385837
-
-
note
-
[4] cut can be used to verify that all four of these coefficients are equal to each other (and nonzero), so this equation is not useful.
-
-
-
|