메뉴 건너뛰기




Volumn , Issue , 2004, Pages 221-225

Comparing natural and synthetic training data for off-line cursive handwriting recognition

Author keywords

Hidden Markov model (HMM); Off line cursive hanawriting recognition; Perturbation model; Synthetic training data; Training set expansion

Indexed keywords

HIDDEN MARKOV MODE (HMM); OFFLINE CURVASIVE HANDWRITING RECOGNITION; PERTURBATION MODEL; SYNTHETIC TRAINING DATA; TRAINING SET EXPANSION;

EID: 18044387170     PISSN: 15505235     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/IWFHR.2004.29     Document Type: Conference Paper
Times cited : (21)

References (15)
  • 2
    • 84951770990 scopus 로고    scopus 로고
    • Training set expansion in handwritten character recognition
    • Windsor, Ontario, Canada
    • J. Cano, J. Pérez-Cortes, J. Arlandis, and R. Llobet. Training Set Expansion in Handwritten Character Recognition. In Proc. 9th SSPR / 4th SPR, pages 548-556, Windsor, Ontario, Canada, 2002.
    • (2002) Proc. 9th SSPR / 4th SPR , pp. 548-556
    • Cano, J.1    Pérez-Cortes, J.2    Arlandis, J.3    Llobet, R.4
  • 3
    • 0002552358 scopus 로고
    • Improving performance in neural networks using a boosting algorithm
    • S. Hanson et. al., editor, Morgan Kaufmann, San Mateo CA
    • H. Drucker, R. Schapire, and P. Simard. Improving Performance in Neural Networks Using a Boosting Algorithm. In S. Hanson et. al., editor, Advances in Neural Information Processing Systems 5, pages 42-49. Morgan Kaufmann, San Mateo CA, 1993.
    • (1993) Advances in Neural Information Processing Systems , vol.5 , pp. 42-49
    • Drucker, H.1    Schapire, R.2    Simard, P.3
  • 5
    • 0031273531 scopus 로고    scopus 로고
    • Improving OCR performance using character degradation models and boosting algorithms
    • J. Mao and K. Mohiuddin. Improving OCR performance using character degradation models and boosting algorithms. Pattern Recognition Letters, 18:1415-1419, 1997.
    • (1997) Pattern Recognition Letters , vol.18 , pp. 1415-1419
    • Mao, J.1    Mohiuddin, K.2
  • 6
    • 0035247074 scopus 로고    scopus 로고
    • Using a statistical language model to improve the performance of an HMM-based cursive handwriting recognition system
    • U.-V. Marti and H. Bunke. Using a statistical language model to improve the performance of an HMM-based cursive handwriting recognition system. Int. Journal of Pattern Recognition and Artifical Intelligence, 15(1):65-90, 2001.
    • (2001) Int. Journal of Pattern Recognition and Artifical Intelligence , vol.15 , Issue.1 , pp. 65-90
    • Marti, U.-V.1    Bunke, H.2
  • 7
    • 84893412627 scopus 로고    scopus 로고
    • The IAM-database: An english sentence database for off-line handwriting recognition
    • U.-V. Marti and H. Bunke. The IAM-Database: an English Sentence Database for Off-line Handwriting Recognition. Int. Journal on Document Analysis and Recognition, 5(1):39-46, 2002.
    • (2002) Int. Journal on Document Analysis and Recognition , vol.5 , Issue.1 , pp. 39-46
    • Marti, U.-V.1    Bunke, H.2
  • 10
    • 0742276805 scopus 로고    scopus 로고
    • The effect of large training set sizes on online Japanese Kanji and English cursive recognizers
    • Niagara-on-the-Lake, Ontario, Canada
    • H. Rowley, M. Goyal, and J. Bennett. The effect of large training set sizes on online Japanese Kanji and English cursive recognizers. In Proc. 8th Int. Workshop on Frontiers in Handwriting Recognition, pages 36-40, Niagara-on-the-Lake, Ontario, Canada, 2002.
    • (2002) Proc. 8th Int. Workshop on Frontiers in Handwriting Recognition , pp. 36-40
    • Rowley, H.1    Goyal, M.2    Bennett, J.3
  • 11
    • 0028499496 scopus 로고
    • Generating manifold samples from a handwritten word
    • S. Setlur and V. Govindaraju. Generating manifold samples from a handwritten word. Pattern Recognition Letters, 15:901-905, 1994.
    • (1994) Pattern Recognition Letters , vol.15 , pp. 901-905
    • Setlur, S.1    Govindaraju, V.2
  • 12
    • 0003137923 scopus 로고
    • Efficient pattern recognition using a new transformation distance
    • S. Hanson et. al., editor, Morgan Kaufmann, San Mateo CA
    • P. Simard, Y. Cun, and J. Denker. Efficient pattern recognition using a new transformation distance. In S. Hanson et. al., editor, Advances in Neural Information Processing Systems 5, pages 50-58. Morgan Kaufmann, San Mateo CA, 1993.
    • (1993) Advances in Neural Information Processing Systems , vol.5 , pp. 50-58
    • Simard, P.1    Cun, Y.2    Denker, J.3
  • 13
    • 84945918022 scopus 로고    scopus 로고
    • Generation of synthetic training data for an HMM-based handwriting recognition system
    • Edinburgh, Scotland, August
    • T. Varga and H. Bunke. Generation of Synthetic Training Data for an HMM-based Handwriting Recognition System. In Proc. 7th Int. Conf. on Document Analysis and Recognition, pages 618-622, Edinburgh, Scotland, August 2003.
    • (2003) Proc. 7th Int. Conf. on Document Analysis and Recognition , pp. 618-622
    • Varga, T.1    Bunke, H.2
  • 14
    • 10044277880 scopus 로고    scopus 로고
    • Off-line handwritten textline recognition using a mixture of natural and synthetic training data
    • Cambridge, United Kingdom, August, to appear
    • T. Varga and H. Bunke. Off-line Handwritten Textline Recognition Using a Mixture of Natural and Synthetic Training Data. In Proc. 17th International Conference on Pattern Recognition, Cambridge, United Kingdom, August 2004, to appear.
    • (2004) Proc. 17th International Conference on Pattern Recognition
    • Varga, T.1    Bunke, H.2
  • 15
    • 84947741610 scopus 로고    scopus 로고
    • The impact of large training sets on the recognition rate of off-line japanese kanji character classifiers
    • August
    • O. Velek and M. Nakagawa. The Impact of Large Training Sets on the Recognition Rate of Off-line Japanese Kanji Character Classifiers. In Proc. 5th Int. Workshop on Document Analysis Systems (DAS 2002), pages 106-109, August 2002.
    • (2002) Proc. 5th Int. Workshop on Document Analysis Systems (DAS 2002) , pp. 106-109
    • Velek, O.1    Nakagawa, M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.