메뉴 건너뛰기




Volumn 38, Issue 3, 1996, Pages 291-298

Estimation of quantiles for a fréchet-type distribution

Author keywords

Domain of attraction; Extreme values; Gumbel type distribution; Local maximum likelihood estimator; Shape parameter; Tail index

Indexed keywords


EID: 17944383414     PISSN: 00049581     EISSN: None     Source Type: Journal    
DOI: 10.1111/j.1467-842X.1996.tb00683.x     Document Type: Article
Times cited : (1)

References (12)
  • 1
    • 0021375203 scopus 로고
    • Using extreme value theory to estimate large quantiles
    • BOOS, D.D. (1984). Using extreme value theory to estimate large quantiles. Technometrics 26, 33-39.
    • (1984) Technometrics , vol.26 , pp. 33-39
    • Boos, D.D.1
  • 2
    • 0000857049 scopus 로고
    • Kernel estimates of the tail index of a distribution
    • CSÖRGÖ, S., DEHEUVELS, P. & MASON, D. (1985). Kernel estimates of the tail index of a distribution. Ann. Statist. 13, 1050-1077.
    • (1985) Ann. Statist. , vol.13 , pp. 1050-1077
    • Csörgö, S.1    Deheuvels, P.2    Mason, D.3
  • 4
    • 0000822729 scopus 로고
    • Tail estimates motivated by extreme value theory
    • DAVIS, R. & RESNICK, S. (1984). Tail estimates motivated by extreme value theory. Ann. Statist. 12, 1467-1487.
    • (1984) Ann. Statist. , vol.12 , pp. 1467-1487
    • Davis, R.1    Resnick, S.2
  • 5
    • 0003891193 scopus 로고
    • GALAMBOS, J., Lechner, J. & Simiu, E. (Eds) Kluwer Academic Publishers
    • GALAMBOS, J., Lechner, J. & Simiu, E. (Eds) (1994). Extreme Value Theory and its Applications. Kluwer Academic Publishers.
    • (1994) Extreme Value Theory and Its Applications
  • 6
    • 0000017257 scopus 로고
    • A test for extreme value domain of attraction
    • HASOFER, A.M. & WANG, Z. (1992). A test for extreme value domain of attraction. J. Amer. Statist. Assoc. 87, 171-177.
    • (1992) J. Amer. Statist. Assoc. , vol.87 , pp. 171-177
    • Hasofer, A.M.1    Wang, Z.2
  • 8
    • 0001263124 scopus 로고
    • A simple approach to inference about the tail of a distribution
    • HILL, D.M. (1975). A simple approach to inference about the tail of a distribution. Ann. Statist. 3, 1163-1174.
    • (1975) Ann. Statist. , vol.3 , pp. 1163-1174
    • Hill, D.M.1
  • 9
    • 0005443969 scopus 로고
    • Estimation of quantiles of the maximum of N observations
    • JOE, H. (1987). Estimation of quantiles of the maximum of N observations. Biometrika 74, 347-354.
    • (1987) Biometrika , vol.74 , pp. 347-354
    • Joe, H.1
  • 10
    • 0004169687 scopus 로고
    • Melbourne: Thomas Nelson Australia
    • SMITH, P.J. (1993). Into Statistics. Melbourne: Thomas Nelson Australia.
    • (1993) Into Statistics
    • Smith, P.J.1
  • 11
    • 0000110113 scopus 로고
    • Maximum likelihood estimation of the lower tail of a probability distribution
    • SMITH, R.L. & WEISSMAN, I. (1985). Maximum likelihood estimation of the lower tail of a probability distribution. J. Roy. Statist. Soc. Ser. B 47, 285-298.
    • (1985) J. Roy. Statist. Soc. Ser. B , vol.47 , pp. 285-298
    • Smith, R.L.1    Weissman, I.2
  • 12
    • 84936167519 scopus 로고
    • Estimation of parameters and large quantiles based on the k largest observations
    • WEISSMAN, I. (1978). Estimation of parameters and large quantiles based on the k largest observations. J. Amer. Statist. Assoc. 73, 812-815.
    • (1978) J. Amer. Statist. Assoc. , vol.73 , pp. 812-815
    • Weissman, I.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.