|
Volumn 164-165, Issue , 2005, Pages 1500-1509
|
Methodology of the mechanical properties prediction for the metallurgical products from the engineering steels using the Artificial Intelligence methods
|
Author keywords
Artificial Intelligence; Artificial neural networks; Genetic algorithms; Ultimate tensile strength; Yield point
|
Indexed keywords
ARTIFICIAL INTELLIGENCE;
COMPOSITION;
COMPUTER SOFTWARE;
GENETIC ALGORITHMS;
MATHEMATICAL MODELS;
MECHANICAL PROPERTIES;
NEURAL NETWORKS;
PARAMETER ESTIMATION;
STEEL METALLURGY;
TENSILE STRENGTH;
MANUFACTURE;
NEURAL NETWORK MODELS;
TRAINING SETS;
ULTIMATE TENSILE STRENGTH;
YIELD POINT;
STEEL;
STEEL METALLURGY;
ARTIFICIAL INTELLIGENCE METHODS;
CHEMICAL COMPOSITIONS;
PARTICULAR CONDITION;
STEEL MANUFACTURING;
TECHNOLOGICAL FACTORS;
TECHNOLOGICAL PROCESS;
ULTIMATE TENSILE STRENGTH;
YIELD POINTS;
|
EID: 17844389355
PISSN: 09240136
EISSN: None
Source Type: Journal
DOI: 10.1016/j.jmatprotec.2005.02.194 Document Type: Article |
Times cited : (40)
|
References (14)
|