메뉴 건너뛰기




Volumn 41, Issue 3, 2005, Pages 1-10

Self-organizing maps with multiple input-output option for modeling the Richards equation and its inverse solution

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTER SIMULATION; DATA ACQUISITION; HYDRAULICS; MATHEMATICAL MODELS; MONTE CARLO METHODS; NEURAL NETWORKS; OPTIMIZATION;

EID: 17844388891     PISSN: 00431397     EISSN: None     Source Type: Journal    
DOI: 10.1029/2004WR003630     Document Type: Article
Times cited : (14)

References (37)
  • 1
    • 0034174280 scopus 로고    scopus 로고
    • Artificial neural networks in hydrology. I: Preliminary concepts
    • American Society of Civil Engineers (ASCE) (2000a), Artificial neural networks in hydrology. I: Preliminary concepts, J. Hydrol. Eng., 5, 115-123.
    • (2000) J. Hydrol. Eng. , vol.5 , pp. 115-123
  • 2
    • 0034174396 scopus 로고    scopus 로고
    • Artificial neural networks in hydrology. II: Hydrologic applications
    • American Society of Civil Engineers (ASCE) (2000b), Artificial neural networks in hydrology. II: Hydrologic applications, J. Hydrol. Eng., 5, 124-137.
    • (2000) J. Hydrol. Eng. , vol.5 , pp. 124-137
  • 3
    • 0033097707 scopus 로고    scopus 로고
    • A comparison between neural-network forecasting techniques case study: River flow forecasting
    • Atiya, A. F., and S. I. Shaheen (1999), A comparison between neural-network forecasting techniques case study: River flow forecasting, IEEE Trans. Neural Networks, 18, 402-409.
    • (1999) IEEE Trans. Neural Networks , vol.18 , pp. 402-409
    • Atiya, A.F.1    Shaheen, S.I.2
  • 5
    • 0036221122 scopus 로고    scopus 로고
    • Optimal division of data for neural network models in water resources applications
    • doi:10.1029/2001WR000266
    • Bowden, G. H., H. R. Maier, and G. C. Dandy (2002), Optimal division of data for neural network models in water resources applications, Water Resour. Res., 38(2), 1010, doi:10.1029/2001WR000266.
    • (2002) Water Resour. Res. , vol.38 , Issue.2 , pp. 1010
    • Bowden, G.H.1    Maier, H.R.2    Dandy, G.C.3
  • 6
    • 0028449105 scopus 로고
    • Neural network based objective flow regime identification in air-water two phase flow
    • Cai, S., H. Toral, J. Qiu, and J. Archer (1994), Neural network based objective flow regime identification in air-water two phase flow, Can. J. Chem. Eng., 72, 440-445.
    • (1994) Can. J. Chem. Eng. , vol.72 , pp. 440-445
    • Cai, S.1    Toral, H.2    Qiu, J.3    Archer, J.4
  • 7
    • 0033512986 scopus 로고    scopus 로고
    • A comparison of artificial neural networks used for river flow forecasting
    • Dawson, C. W., and R. L. Wilby (1999), A comparison of artificial neural networks used for river flow forecasting, Hydrol. Earth Syst. Sci., 3, 529-540.
    • (1999) Hydrol. Earth Syst. Sci. , vol.3 , pp. 529-540
    • Dawson, C.W.1    Wilby, R.L.2
  • 8
    • 0034749335 scopus 로고    scopus 로고
    • Hydrological modelling using artificial neural networks
    • Dawson, C. W., and R. L. Wilby (2001), Hydrological modelling using artificial neural networks, Prog. Phys. Geogr., 25, 80-108.
    • (2001) Prog. Phys. Geogr. , vol.25 , pp. 80-108
    • Dawson, C.W.1    Wilby, R.L.2
  • 9
    • 17844370722 scopus 로고    scopus 로고
    • On the uniqueness of the parameters of commonly used soil models
    • Felgenhauer, A., F. Lennartz, and G. H. Schmitz (1999), On the uniqueness of the parameters of commonly used soil models, Geophys. Res. Abstr., 1, 304.
    • (1999) Geophys. Res. Abstr. , vol.1 , pp. 304
    • Felgenhauer, A.1    Lennartz, F.2    Schmitz, G.H.3
  • 11
    • 17844384976 scopus 로고    scopus 로고
    • Documentation of computer program VS2DH for simulation of energy transport in variably saturated porous media - Modification of the U.S. Geological Survey's computer program VS2DT
    • Healy, R. W., and A. D. Ronan (2000), Documentation of computer program VS2DH for simulation of energy transport in variably saturated porous media - Modification of the U.S. Geological Survey's computer program VS2DT, U.S. Geol. Surv. Water Resour. Invest., 96-4230.
    • (2000) U.S. Geol. Surv. Water Resour. Invest., 96-4230
    • Healy, R.W.1    Ronan, A.D.2
  • 13
    • 0029413797 scopus 로고
    • Artificial neural network modeling of the rainfall-runoff process
    • Hsu, K. L., H. V. Gupta, and S. Sorooshian (1995), Artificial neural network modeling of the rainfall-runoff process, Water Resour. Res., 31, 2517-2530.
    • (1995) Water Resour. Res. , vol.31 , pp. 2517-2530
    • Hsu, K.L.1    Gupta, H.V.2    Sorooshian, S.3
  • 14
    • 0031399333 scopus 로고    scopus 로고
    • Precipitation estimation from remotely sensed information using artificial neural networks
    • Hsu, K.-L., X. Gao, S. Sorooshian, and H. V. Gupta (1997), Precipitation estimation from remotely sensed information using artificial neural networks, J. Appl. Meteorol., 36, 1176-1190.
    • (1997) J. Appl. Meteorol. , vol.36 , pp. 1176-1190
    • Hsu, K.-L.1    Gao, X.2    Sorooshian, S.3    Gupta, H.V.4
  • 15
    • 0036998831 scopus 로고    scopus 로고
    • Self-organizing linear output map (SOLO); An artificial neural network suitable for hydrologic modeling and analysis
    • doi:10.1029/2001WR000795
    • Hsu, K.-L., H. V. Gupta, X. Gao, S. Sorooshian, and B. Imam (2002), Self-organizing linear output map (SOLO); An artificial neural network suitable for hydrologic modeling and analysis, Water Resour. Res., 38(12), 1302, doi:10.1029/2001WR000795.
    • (2002) Water Resour. Res. , vol.38 , Issue.12 , pp. 1302
    • Hsu, K.-L.1    Gupta, H.V.2    Gao, X.3    Sorooshian, S.4    Imam, B.5
  • 16
    • 0034838119 scopus 로고    scopus 로고
    • River flow prediction: An artificial neural network approach
    • Jayawardena, A. W., and T. M. Fernando (2001), River flow prediction: An artificial neural network approach, IAHS Publ., 268, 239-246.
    • (2001) IAHS Publ. , vol.268 , pp. 239-246
    • Jayawardena, A.W.1    Fernando, T.M.2
  • 18
    • 0033098992 scopus 로고    scopus 로고
    • Spatial characterization of remotely sensed soil moisture data using self organizing feature maps
    • Kothari, R., and S. Islam (1999), Spatial characterization of remotely sensed soil moisture data using self organizing feature maps, IEEE Trans. Geosci. Remote Sens., 37, 1162-1165.
    • (1999) IEEE Trans. Geosci. Remote Sens. , vol.37 , pp. 1162-1165
    • Kothari, R.1    Islam, S.2
  • 19
    • 85001858096 scopus 로고    scopus 로고
    • Discussion of "Rainfall runoff modeling using artificial neural networks" by A. S. Tokar and P. A. Johnson
    • Kumar, A., and K. V. Minocha (2001), Discussion of "Rainfall runoff modeling using artificial neural networks" by A. S. Tokar and P. A. Johnson, J. Hydrol. Eng., 6, 176-177.
    • (2001) J. Hydrol. Eng. , vol.6 , pp. 176-177
    • Kumar, A.1    Minocha, K.V.2
  • 20
    • 0033957764 scopus 로고    scopus 로고
    • Neural networks for the prediction and forecasting of water resources variables: A review of modelling issues and applications
    • Maier, H. R., and C. D. Dandy (2000), Neural networks for the prediction and forecasting of water resources variables: A review of modelling issues and applications, Environ. Modell. Software, 15, 101-124.
    • (2000) Environ. Modell. Software , vol.15 , pp. 101-124
    • Maier, H.R.1    Dandy, C.D.2
  • 21
    • 0004222008 scopus 로고    scopus 로고
    • Oxford Univ. Press, New York
    • Mallet, J. L. (2002), Geomodeling, Oxford Univ. Press, New York.
    • (2002) Geomodeling
    • Mallet, J.L.1
  • 22
    • 0033406230 scopus 로고    scopus 로고
    • Modeling of evaporation reduction in drip irrigation system
    • Meshkat, M., R. C. Warner, and S. R. Workman (1999), Modeling of evaporation reduction in drip irrigation system, J. Irrig. Drainage Eng., 125, 315-323.
    • (1999) J. Irrig. Drainage Eng. , vol.125 , pp. 315-323
    • Meshkat, M.1    Warner, R.C.2    Workman, S.R.3
  • 23
    • 0030159380 scopus 로고    scopus 로고
    • Artificial neural networks as rainfall-runoff models
    • Minns, A. W., and M. J. Hall (1996), Artificial neural networks as rainfall-runoff models, Hydrol. Sci., 41, 399-417.
    • (1996) Hydrol. Sci. , vol.41 , pp. 399-417
    • Minns, A.W.1    Hall, M.J.2
  • 24
    • 0031702773 scopus 로고    scopus 로고
    • A hybrid global optimization method for inverse estimation of hydraulic parameters: Annealing-simplex method
    • Pan, L., and L. Wu (1998), A hybrid global optimization method for inverse estimation of hydraulic parameters: Annealing-simplex method, Water Resour. Res., 34, 2261-2270.
    • (1998) Water Resour. Res. , vol.34 , pp. 2261-2270
    • Pan, L.1    Wu, L.2
  • 25
    • 84934729852 scopus 로고
    • The theory of infiltration: IV sorptivity and algebraic infiltration equations
    • Philip, J. R. (1957), The theory of infiltration: IV sorptivity and algebraic infiltration equations, J. Soil Sci., 84, 257-265.
    • (1957) J. Soil Sci. , vol.84 , pp. 257-265
    • Philip, J.R.1
  • 28
    • 0028193610 scopus 로고
    • Characterization of aquifer properties using artificial neural networks: Neural kriging
    • Rizzo, D. M., and D. E. Dougherty (1994), Characterization of aquifer properties using artificial neural networks: Neural kriging, Water Resour. Res., 30, 483-497.
    • (1994) Water Resour. Res. , vol.30 , pp. 483-497
    • Rizzo, D.M.1    Dougherty, D.E.2
  • 29
    • 0032334825 scopus 로고    scopus 로고
    • Hydrodynamic-analytical modeling for irrigation analysis
    • Schmitz, G. H., and R. Liedl (1998), Hydrodynamic-analytical modeling for irrigation analysis, Arabian J. Sci. Eng., 23, 43-66.
    • (1998) Arabian J. Sci. Eng. , vol.23 , pp. 43-66
    • Schmitz, G.H.1    Liedl, R.2
  • 30
    • 0036750755 scopus 로고    scopus 로고
    • A new strategy for optimizing water application under trickle irrigation
    • Schmitz, G. H., and N. Schütze (2002), A new strategy for optimizing water application under trickle irrigation, J. Irrig. Drainage Eng., 128, 287-297.
    • (2002) J. Irrig. Drainage Eng. , vol.128 , pp. 287-297
    • Schmitz, G.H.1    Schütze, N.2
  • 31
    • 17844383380 scopus 로고    scopus 로고
    • Optimizing irrigation efficiency with artificial neural networks
    • paper presented, Gdansk Univ. of Technol., Poland, June
    • Schütze, N., and G. H. Schmitz (2003), Optimizing irrigation efficiency with artificial neural networks, paper presented at the Information Technologies in Environmental Engineering Meeting, Gdansk Univ. of Technol., Poland, 24-27 June.
    • (2003) Information Technologies in Environmental Engineering Meeting , pp. 24-27
    • Schütze, N.1    Schmitz, G.H.2
  • 32
    • 0033167344 scopus 로고    scopus 로고
    • Rainfall-runoff modeling using artificial neural networks
    • Sezin, T. A., and P. A. Johnson (1999), Rainfall-runoff modeling using artificial neural networks, J. Hydraul. Eng., 4, 232-239.
    • (1999) J. Hydraul. Eng. , vol.4 , pp. 232-239
    • Sezin, T.A.1    Johnson, P.A.2
  • 33
    • 0342506462 scopus 로고    scopus 로고
    • Application of a neural network technique to rainfall-runoff modelling
    • Shamseldin, A. Y. (1997), Application of a neural network technique to rainfall-runoff modelling, J. Hydrol., 199, 272-294.
    • (1997) J. Hydrol. , vol.199 , pp. 272-294
    • Shamseldin, A.Y.1
  • 34
    • 0035701248 scopus 로고    scopus 로고
    • A non-linear neural network technique for updating of river flow forecasts
    • Shamseldin, A. Y., and K. M. O'Connor (2001), A non-linear neural network technique for updating of river flow forecasts, Hydrol. Earth Syst. Sci., 5, 577-597.
    • (2001) Hydrol. Earth Syst. Sci. , vol.5 , pp. 577-597
    • Shamseldin, A.Y.1    O'Connor, K.M.2
  • 35
    • 17844400233 scopus 로고    scopus 로고
    • Hydrus-2D: User manual
    • Int. Ground Water Model, Cent. Colo. School of Mines, Golden
    • Simúnek, J., M. Šejna, and M. T. van Genuchten (1996), Hydrus-2D: User manual, Rep. IGWMC-TPS 53, Int. Ground Water Model, Cent. Colo. School of Mines, Golden.
    • (1996) Rep. IGWMC-TPS 53
    • Simúnek, J.1    Šejna, M.2    Van Genuchten, M.T.3
  • 36
    • 0029416249 scopus 로고
    • Neural network models of rainfall-runoff process
    • Smith, J., and R. N. Eli (1995), Neural network models of rainfall-runoff process, J. Water Resour. Plann. Manage., 121, 499-508.
    • (1995) J. Water Resour. Plann. Manage. , vol.121 , pp. 499-508
    • Smith, J.1    Eli, R.N.2
  • 37
    • 0034480368 scopus 로고    scopus 로고
    • Effect of the shape of the soil hydraulic functions near saturation on variably-saturated flow predictions
    • Vogel, T., M. T. van Genuchten, and M. Cislerova (2000), Effect of the shape of the soil hydraulic functions near saturation on variably-saturated flow predictions, Adv. Water Resour. Res., 24, 133-144.
    • (2000) Adv. Water Resour. Res. , vol.24 , pp. 133-144
    • Vogel, T.1    Van Genuchten, M.T.2    Cislerova, M.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.